Anopheles gambiae uses its sense of smell to hunt humans. We report a two-step method yielding cell-type-specific driver lines for enhanced neuroanatomical and functional studies of its olfactory system. We first integrated a driver-responder-marker (DRM) system cassette consisting of a linked T2A-QF2 driver, QUAS-GFP responder, and a gut-specific transgenesis marker into four chemoreceptor genes (Ir25a, Ir76b, Gr22, and orco) using CRISPR-Cas9-mediated homology-directed repair.
View Article and Find Full Text PDFThe introduction of small unmarked edits to the genome of insects is essential to study the molecular underpinnings of important biological traits, such as resistance to insecticides and genetic control strategies. Advances in CRISPR genome engineering have made this possible, but prohibitively laborious for most laboratories due to low rates of editing and the lack of a selectable marker. To facilitate the generation and isolation of precise marker-less edits we have developed a two-step method based on CRISPR-mediated cassette exchange (CriMCE) of a marked placeholder for a variant of interest.
View Article and Find Full Text PDFCRISPR-Cas9 nuclease-based gene drives have been developed toward the aim of control of the human malaria vector Gene drives are based on an active source of Cas9 nuclease in the germline that promotes super-Mendelian inheritance of the transgene by homology-directed repair ("homing"). Understanding whether CRISPR-induced off-target mutations are generated in mosquitoes is an important aspect of risk assessment before any potential field release of this technology. We compared the frequencies and the propensity of off-target events to occur in four different gene-drive strains, including a deliberately promiscuous set-up, using a nongermline restricted promoter for SpCas9 and a guide RNA with many closely related sites (two or more mismatches) across the mosquito genome.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFOnly female insects transmit diseases such as malaria, dengue and Zika; therefore, control methods that bias the sex ratio of insect offspring have long been sought. Genetic elements such as sex-chromosome drives can distort sex ratios to produce unisex populations that eventually collapse, but the underlying molecular mechanisms are unknown. We report a male-biased sex-distorter gene drive (SDGD) in the human malaria vector Anopheles gambiae.
View Article and Find Full Text PDFMalaria is a serious global health burden, affecting more than 200 million people each year in over 90 countries, predominantly in Africa, Asia and the Americas. Since the year 2000, a concerted effort to combat malaria has reduced its incidence by more than 40%, primarily due to the use of insecticide-treated bednets, indoor residual spraying and artemisinin-based combination drug therapies. Nevertheless, the cost of control is expected to nearly triple over the next decade and the current downward trend in disease transmission is threatened by the rise of resistance to drugs and insecticides.
View Article and Find Full Text PDFIn the human malaria vector Anopheles gambiae, the gene doublesex (Agdsx) encodes two alternatively spliced transcripts, dsx-female (AgdsxF) and dsx-male (AgdsxM), that control differentiation of the two sexes. The female transcript, unlike the male, contains an exon (exon 5) whose sequence is highly conserved in all Anopheles mosquitoes so far analyzed. We found that CRISPR-Cas9-targeted disruption of the intron 4-exon 5 boundary aimed at blocking the formation of functional AgdsxF did not affect male development or fertility, whereas females homozygous for the disrupted allele showed an intersex phenotype and complete sterility.
View Article and Find Full Text PDFSelf-propagating gene drive technologies have a number of desirable characteristics that warrant their development for the control of insect pest and vector populations, such as the malaria-transmitting mosquitoes. Theoretically easy to deploy and self-sustaining, these tools may be used to generate cost-effective interventions that benefit society without obvious bias related to wealth, age or education. Their species-specific design offers the potential to reduce environmental risks and aim to be compatible and complementary with other control strategies, potentially expediting the elimination and eradication of malaria.
View Article and Find Full Text PDFGene drives have enormous potential for the control of insect populations of medical and agricultural relevance. By preferentially biasing their own inheritance, gene drives can rapidly introduce genetic traits even if these confer a negative fitness effect on the population. We have recently developed gene drives based on CRISPR nuclease constructs that are designed to disrupt key genes essential for female fertility in the malaria mosquito.
View Article and Find Full Text PDFVasostatin I (CgA(1-76)) is a naturally occurring biologically active peptide derived from chromogranin A (CgA), and is so named for its inhibitory effects on vascular tension. CgA mRNA is expressed abundantly in sympathoexcitatory catecholaminergic neurons of the rostral ventrolateral medulla (RVLM). CgA microinjection into the RVLM decreases blood pressure (BP), heart rate (HR) and sympathetic nerve activity (SNA).
View Article and Find Full Text PDF