Publications by authors named "Andrew M Hamilton"

Inducing regeneration in injured spinal cord represents one of modern medicine's greatest challenges. Research from a variety of model organisms indicates that Hedgehog (Hh) signaling may be a useful target to drive regeneration. However, the mechanisms of Hh signaling-mediated tissue regeneration remain unclear.

View Article and Find Full Text PDF

Sonic hedgehog (Shh) signaling occurs concurrently with the many processes that constitute nervous system development. Although Shh is mostly known for its proliferative and morphogenic action through its effects on neural stem cells and progenitors, it also contributes to neuronal differentiation, axonal pathfinding and synapse formation and function. To participate in these diverse events, Shh signaling manifests differently depending on the maturational state of the responsive cell, on the other signaling pathways regulating neural cell function and the environmental cues that surround target cells.

View Article and Find Full Text PDF

Skeletal muscle-specific stem cells are pivotal for tissue development and regeneration. Muscle plasticity, inherent in these processes, is also essential for daily life activities. Great advances and efforts have been made in understanding the function of the skeletal muscle-dedicated stem cells, called muscle satellite cells, and the specific signaling mechanisms that activate them for recruitment in the repair of the injured muscle.

View Article and Find Full Text PDF

Nervous system development relies on the generation of neurons, their differentiation and establishment of synaptic connections. These events exhibit remarkable plasticity and are regulated by many developmental cues. Here, we review the mechanisms of three classes of these cues: morphogenetic proteins, electrical activity, and the environment.

View Article and Find Full Text PDF

The ubiquitin-proteasome system (UPS) is most widely known for its role in intracellular protein degradation; however, in the decades since its discovery, ubiquitination has been associated with the regulation of a wide variety of cellular processes. The addition of ubiquitin tags, either as single moieties or as polyubiquitin chains, has been shown not only to mediate degradation by the proteasome and the lysosome, but also to modulate protein function, localization, and endocytosis. The UPS plays a particularly important role in neurons, where local synthesis and degradation work to balance synaptic protein levels at synapses distant from the cell body.

View Article and Find Full Text PDF

Considerable evidence has accumulated that structural changes in dendritic spines and their synapses are associated with adaptive functional changes in cortical circuits, such as during circuit refinement in young animals and in learning and memory in adults. Understanding the mechanisms of circuit plasticity requires detailed investigation of the structural dynamics of dendritic spines and how they are regulated by neural activity and sensory experience. Studying the dynamic localization of synaptic proteins in dendritic spines and how their stabilization and exchange rates influence spine structural plasticity is also important.

View Article and Find Full Text PDF

Growth of new dendritic spines contributes to experience-dependent circuit plasticity in the cerebral cortex. Yet the signaling mechanisms leading to new spine outgrowth remain poorly defined. Increasing evidence supports that the proteasome is an important mediator of activity-dependent neuronal signaling.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the impact of introduced generalist invertebrate herbivores, especially nocturnal ones like slugs and earwigs, on plant communities in North America, which has been less studied compared to Europe.
  • Researchers found that 96% of herbivores at their California site were introduced generalists and examined how these herbivores affect the distribution, growth, and survivorship of 12 native and introduced plant species.
  • Their results revealed that native seedlings were not more vulnerable or palatable to the generalists than introduced species, countering the initial hypothesis that native plants would be more affected due to a lack of evolutionary history with these herbivores.
View Article and Find Full Text PDF

Pigmentation is a rapidly evolving trait that can play important roles in mimicry, sexual selection, thermoregulation, and other adaptive processes in many groups of animals. In Drosophila, pigmentation can differ dramatically among closely related taxa, presenting a good opportunity to dissect the genetic changes underlying species divergence. In this report, we investigate the genetic basis of color pattern variation between two allopatric subspecies of Drosophila malerkotliana, a widespread member of the ananassae species subgroup.

View Article and Find Full Text PDF

Host plant shifts by phytophagous insects play a key role in insect evolution and plant ecology. Such shifts often involve major behavioral changes as the insects must acquire an attraction and/or lose the repulsion to the new host plant's odor and taste. The evolution of chemotactic behavior may be due, in part, to gene expression changes in the peripheral sensory system.

View Article and Find Full Text PDF