Introduction: Analysis of an individual's immunoglobulin (IG) gene repertoire requires the use of high-quality germline gene reference sets. When sets only contain alleles supported by strong evidence, AIRR sequencing (AIRR-seq) data analysis is more accurate and studies of the evolution of IG genes, their allelic variants and the expressed immune repertoire is therefore facilitated.
Methods: The Adaptive Immune Receptor Repertoire Community (AIRR-C) IG Reference Sets have been developed by including only human IG heavy and light chain alleles that have been confirmed by evidence from multiple high-quality sources.
In adaptive immune receptor repertoire analysis, determining the germline variable (V) allele associated with each T- and B-cell receptor sequence is a crucial step. This process is highly impacted by allele annotations. Aligning sequences, assigning them to specific germline alleles, and inferring individual genotypes are challenging when the repertoire is highly mutated, or sequence reads do not cover the whole V region.
View Article and Find Full Text PDFAnalysis of an individual's immunoglobulin or T cell receptor gene repertoire can provide important insights into immune function. High-quality analysis of adaptive immune receptor repertoire sequencing data depends upon accurate and relatively complete germline sets, but current sets are known to be incomplete. Established processes for the review and systematic naming of receptor germline genes and alleles require specific evidence and data types, but the discovery landscape is rapidly changing.
View Article and Find Full Text PDFBackground And Aims: The majority of Australians are regular users of social media, especially young adults. Of concern, is that a minority of people appear to use social media in an addictive or problematic way which is associated with negative psychological outcomes such as depression. Social comparisons, where users compare themselves to others on social media, have also been linked with depression.
View Article and Find Full Text PDFImmunol Cell Biol
August 2022
Reproductive isolation drives the formation of new species, and many genes contribute to this through Dobzhansky-Muller incompatibilities (DMIs). These incompatibilities occur when gene divergence affects loci encoding interacting products such as receptors and their ligands. We suggest here that the nature of vertebrate immunoglobulin (IG) genes must make them prone to DMIs.
View Article and Find Full Text PDFThe immunoglobulin genes of inbred mouse strains that are commonly used in models of antibody-mediated human diseases are poorly characterized. This compromises data analysis. To infer the immunoglobulin genes of BALB/c mice, we used long-read SMRT sequencing to amplify VDJ-C sequences from F1 (BALB/c x C57BL/6) hybrid animals.
View Article and Find Full Text PDFBackground: T and B cell receptor (TCR, BCR) repertoires constitute the foundation of adaptive immunity. Adaptive immune receptor repertoire sequencing (AIRR-seq) is a common approach to study immune system dynamics. Understanding the genetic factors influencing the composition and dynamics of these repertoires is of major scientific and clinical importance.
View Article and Find Full Text PDFCurr Opin Syst Biol
December 2020
Immunoglobulin genes are rarely considered as disease susceptibility genes despite their obvious and central contributions to immune function. This appears to be a consequence of historical views on antibody repertoire formation that no longer stand, and of difficulties that until recently surrounded the documentation of the suite of antibody genes in any individual. If these important genes are to be accessible to GWAS studies, allelic variation within the human population needs to be better documented, and a curated set of genomic variations associated with antibody genes needs to be formulated.
View Article and Find Full Text PDFMammalian immunoglobulin (IG) genes are found in complex loci that contain hundreds of highly similar pseudogenes, functional genes and repetitive elements, which has made their investigation particularly challenging. High-throughput sequencing has provided new avenues for the investigation of these loci, and has recently been applied to study the IG genes of important inbred mouse strains, revealing unexpected differences between their IG loci. This demonstrated that the structural differences are of such magnitude that they call into question the merits of the current mouse IG gene nomenclatures.
View Article and Find Full Text PDFNucleic Acids Res
January 2020
The genomes of classical inbred mouse strains include genes derived from all three major subspecies of the house mouse, Mus musculus. We recently posited that genetic diversity in the immunoglobulin heavy chain (IGH) gene loci of C57BL/6 and BALB/c mice reflects differences in subspecies origin. To investigate this hypothesis, we conducted high-throughput sequencing of IGH gene rearrangements to document IGH variable (IGHV), joining (IGHJ) and diversity (IGHD) genes in four inbred wild-derived mouse strains (CAST/EiJ, LEWES/EiJ, MSM/MsJ and PWD/PhJ) and a single disease model strain (NOD/ShiLtJ), collectively representing genetic backgrounds of several major mouse subspecies.
View Article and Find Full Text PDFImmunoglobulins or antibodies are the main effector molecules of the B-cell lineage and are encoded by hundreds of variable (V), diversity (D), and joining (J) germline genes, which recombine to generate enormous IG diversity. Recently, high-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) of recombined V-(D)-J genes has offered unprecedented insights into the dynamics of IG repertoires in health and disease. Faithful biological interpretation of AIRR-seq studies depends upon the annotation of raw AIRR-seq data, using reference germline gene databases to identify the germline genes within each rearrangement.
View Article and Find Full Text PDFAnalysis of antibody repertoires by high-throughput sequencing is of major importance in understanding adaptive immune responses. Our knowledge of variations in the genomic loci encoding immunoglobulin genes is incomplete, resulting in conflicting VDJ gene assignments and biased genotype and haplotype inference. Haplotypes can be inferred using IGHJ6 heterozygosity, observed in one third of the people.
View Article and Find Full Text PDFDiscussion of the antibody repertoire usually emphasizes diversity, but a conspicuous feature of the light chain repertoire is its lack of diversity. The diversity of reported allelic variants of germline light chain genes is also limited, even in well-studied species. In this review, the implications of this lack of diversity are considered.
View Article and Find Full Text PDFThe immune systems of all mammals include populations of B cells producing antibodies with incredibly diverse specificities. Repertoire diversity has been described as the "miracle of immunology," and it was long thought to be the result of essentially stochastic processes. Recently, however, analysis of high throughput gene sequencing data has shown that hard-wired biases in these processes result in antibody repertoires that are broadly predictable.
View Article and Find Full Text PDFHigh-throughput sequencing (HTS) of immunoglobulin (B-cell receptor, antibody) and T-cell receptor repertoires has increased dramatically since the technique was introduced in 2009 (1-3). This experimental approach explores the maturation of the adaptive immune system and its response to antigens, pathogens, and disease conditions in exquisite detail. It holds significant promise for diagnostic and therapy-guiding applications.
View Article and Find Full Text PDFThe chemotherapeutic Parthenolide is an exciting new candidate for the treatment of acute lymphoblastic leukemia, but like many other small-molecule drugs, it has low aqueous solubility. As a consequence, Parthenolide can only be administered clinically in the presence of harmful cosolvents. Accordingly, we describe the synthesis, characterization, and testing of a range of biocompatible triblock copolymer micelles as particle-based delivery vectors for the hydrophobic drug Parthenolide.
View Article and Find Full Text PDFImmunol Cell Biol
November 2016
A model of murine IgG function is presented in which the co-expression of the IgG subclasses is a central feature, class switching occurs before the commencement of somatic hypermutation, and there is little switching between subclasses. It is named the quartet model to emphasize the harmony that comes from the simultaneous presence of the four subclasses. In this model, IgG3 and IgG2b antibodies are particularly important early in the response, when T-cell help may be limiting.
View Article and Find Full Text PDFAim: In this study, chlorhexidine hexametaphosphate (CHX-HMP) is investigated as a persistent antimicrobial coating for wound care materials.
Materials & Methods: CHX-HMP was used as a wound care material coating and compared with chlorhexidine digluconate materials with respect to antimicrobial efficacy, toxicity and wound closure.
Results: Antimicrobial efficacy at day 1, 3 and 7 was observed with experimental and commercial materials.
The continued development of novel drugs, proteins, and advanced materials strongly rely on our ability to self-assemble molecules in solids with the most suitable structure (polymorph) in order to exhibit desired functionalities. The search for new polymorphs remains a scientific challenge, that is at the core of crystal engineering and there has been a lack of effective solutions to this problem. Here we show that by crystallizing the polyaromatic hydrocarbon coronene in the presence of a magnetic field, a polymorph is formed in a β-herringbone structure instead of the ubiquitous γ-herringbone structure, with a decrease of 35° in the herringbone nearest neighbour angle.
View Article and Find Full Text PDFHuman IgH diversity is influenced by biases in the pairing of IGHD and IGHJ genes, but these biases have not been described in detail. We used high-throughput sequencing of VDJ rearrangements to explore DJ pairing biases in 29 individuals. It was possible to infer three contrasting IGHD-IGHJ haplotypes in nine of these individuals, and two of these haplotypes include deletion polymorphisms involving multiple contiguous IGHD genes.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
September 2015
The human and mouse antibody repertoires are formed by identical processes, but like all small animals, mice only have sufficient lymphocytes to express a small part of the potential antibody repertoire. In this study, we determined how the heavy chain repertoires of two mouse strains are generated. Analysis of IgM- and IgG-associated VDJ rearrangements generated by high-throughput sequencing confirmed the presence of 99 functional immunoglobulin heavy chain variable (IGHV) genes in the C57BL/6 genome, and inferred the presence of 164 IGHV genes in the BALB/c genome.
View Article and Find Full Text PDF