Biosurfactants comprise a wide array of amphiphilic molecules synthesized by plants, animals, and microbes. The synthesis route dictates their molecular characteristics, leading to broad structural diversity and ensuing functional properties. We focus here on low molecular weight (LMW) and high molecular weight (HMW) biosurfactants of microbial origin.
View Article and Find Full Text PDFExpert Opin Drug Deliv
November 2018
Introduction: Nanostructured delivery vehicles can address key challenges facing drug delivery, including the lipophilic nature of therapeutic compounds and their effective transport through the body. Amphiphilic block copolymers that self-assemble offer advantages compared with homopolymer-, lipid-, and protein-based delivery vehicles. Poly(ethylene oxide)-poly(propylene oxide) amphiphilic block copolymers (Poloxamers) serve well as pharmaceutical excipients because of their highly tunable association properties, low toxicity, and ability to functionalize.
View Article and Find Full Text PDFPoloxamers, also known as Pluronics, are block copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), which have an amphiphilic character and useful association and adsorption properties emanating from this. Poloxamers find use in many applications that require solubilization or stabilization of compounds and also have notable physiological properties, including low toxicity. Accordingly, poloxamers serve well as excipients for pharmaceuticals.
View Article and Find Full Text PDFThe adsorption of amphiphilic molecules of varying size on solid-liquid interfaces modulates the properties of colloidal systems. Nonionic, poly(ethylene oxide) (PEO)-based amphiphilic molecules are particularly useful because of their graded hydrophobic-hydrophilic nature, which allows for adsorption on a wide array of solid surfaces. Their adsorption also results in other useful properties, such as responsiveness to external stimuli and solubilization of hydrophobic compounds.
View Article and Find Full Text PDFWe investigate the role of three polar organic solvents (dimethyl formamide (DMF), dimethyl sulfoxide (DMSO), and glycerol) on the interfacial behavior of Pluronic P105 poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers on protonated silica nanoparticles in an aqueous dispersion. The polymer adsorption and self-assembly have been assessed from critical surface micelle concentration (csmc, measured by pyrene fluorescence spectroscopy) and adsorbed layer thickness (measured by capillary viscometry) data. Above its csmc, PEO-PPO-PEO block copolymers form hydrophobic domains on the nanoparticle surface.
View Article and Find Full Text PDF