Publications by authors named "Andrew M Batchelor"

Genetically-encoded biosensors are powerful tools for understanding cellular signal transduction mechanisms. In aiming to investigate cGMP signaling in neurones using the EGFP-based fluorescent biosensor, FlincG (fluorescent indicator for cGMP), we encountered weak or non-existent fluorescence after attempted transfection with plasmid DNA, even in HEK293T cells. Adenoviral infection of HEK293T cells with FlincG, however, had previously proved successful.

View Article and Find Full Text PDF

Nitric oxide (NO) is a widespread signaling molecule with potentially multifarious actions of relevance to health and disease. A fundamental determinant of how it acts is its concentration, but there remains a lack of coherent information on the patterns of NO release from its sources, such as neurons or endothelial cells, in either normal or pathological conditions. We have used detector cells having the highest recorded NO sensitivity to monitor NO release from brain tissue quantitatively and in real time.

View Article and Find Full Text PDF

Nitric oxide (NO) functions as a diffusible transmitter in most tissues of the body and exerts its effects by binding to receptors harboring a guanylyl cyclase transduction domain, resulting in cGMP accumulation in target cells. Despite its widespread importance, very little is known about how this signaling pathway operates at physiological NO concentrations and in real time. To address these deficiencies, we have exploited the properties of a novel cGMP biosensor, named δ-FlincG, expressed in cells containing varying mixtures of NO-activated guanylyl cyclase and cGMP-hydrolyzing phosphodiesterase activity.

View Article and Find Full Text PDF

CPCCOEt (7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester) is frequently used to test for the involvement of mGlu1 receptors. Using whole-cell voltage recording from Purkinje cells in slices of rat cerebellum we find that CPCCOEt, at concentrations used to block mGlu1 receptors, causes an enhancement of the climbing fibre response. Application of alternative antagonists with activity at mGlu1 neither mimicked nor occluded the effects of CPCCOEt.

View Article and Find Full Text PDF

Binding studies indicate that the molecular layer of the cerebellum has a high concentration of gamma-aminobutyric acid type B (GABAB) receptors. In order to elucidate the function of these receptors we have recorded from Purkinje cells in biplanar slices of immature (14-day-old) and adult rat cerebellum using a low-noise, non-invasive, gap technique. The responses of Purkinje cells to parallel fibre stimulation in slices from both immature and adult rats contained a wave that could be inhibited by the GABAA antagonist, bicuculline.

View Article and Find Full Text PDF