Publications by authors named "Andrew Lyddiatt"

Aqueous two-phase systems (ATPS) have been widely adopted for the combined purpose of solid liquid separation, and recovery and purification of bioproducts such as proteins, viruses and organelles from biological feedstocks and fermentation broth. However, in spite of potential advantages over other techniques applied to concentrated biological feedstocks, ATPS have been applied at process scale only by a few industries and research establishments. ATPS are sensitive to loading with modest to extreme quantities of biological feedstock due to the contribution of that material to phase formation in combination with the conventional phase-forming chemicals.

View Article and Find Full Text PDF

There is a constant and growing interest in exploitingadenoviruses as vectors for gene therapy when transientexpression of a therapeutic protein is necessary. Therequirement for an increased viral titre has prompted asearch for techniques by which this virus may be assayedwith greater speed and simplicity. Conventional plaqueassay for quantification of adenoviral vectors titre incurrent use is laborious and time-consuming (up to 14days).

View Article and Find Full Text PDF

Biotechnology industry has recently been demanding nanoparticulate products (20-200 nm) such as viruses, plasmids, virus-like particles and drug delivery assemblies. These products are mainly used as gene delivery systems in gene therapy protocols. During the process development for the manufacture of these products, it is crucial to optimize the recovery and purification steps.

View Article and Find Full Text PDF

The development of a simplified process for the simultaneous disruption and direct selective purification of intracellular proteins from unclarified yeast disruptate has been investigated. The recovery of glyceraldehyde 3-phosphate dehydrogenase (G3PDH) from baker's yeast was selected as a potential demonstration of the generic applicability and practical feasibility of this integrated technique. The application of an adsorbent characterised by high density (UpFront steel-agarose; rho=2.

View Article and Find Full Text PDF

The development of a process intensified primary capture step for the direct selective recovery of intracellular proteins from very dense particulate-containing yeast extract has been explored. The purification of glyceraldehyde 3-phosphate dehydrogenase from bakers' yeast was chosen as a potential demonstration of this approach. A high throughput (50%, w/v, yeast extracts at a superficial linear velocity of 450 cm h(-1)) was achieved by adoption of a high-density adsorbent (UpFront steel-agarose; rho = 2.

View Article and Find Full Text PDF

Suspended bed chromatography (SBC) is a new hybrid technique concomitantly benefiting from batch adsorption, the process advantages of an enclosed system, and its compatibility with established commercial chromatographic contactors and adsorbents. SBC was evaluated in the anion-exchange capture and chromatographic fractionation of native glyceraldehyde-3-phosphate dehydrogenase (G3PDH) from the complex mixture of molecular and particulate moieties that constitute wet-milled bakers' yeast. Method scouting established operating conditions exploiting Whatman Express-Ion Exchanger Q at pH 7.

View Article and Find Full Text PDF

A novel prototype adsorbent, designed for intensified fluidised bed adsorption processes, was assembled by the emulsification coating of 4% (w/v) porous agarose upon a zirconia-silica solid core. The adsorbent, designated ZSA (particle density 1.75 g/ml, maximum pellicle depth 40 microm), was subjected to physical and biochemical comparison with the performance of two commercial adsorbents (Streamline and Macrosorb K4AX).

View Article and Find Full Text PDF

A contemporary review of adsorption chromatography must embrace aspects of fixed-bed, batch suspension and fluidised-bed contacting of complex feedstocks with adsorbents chemically derivatised with ligands with binding specificities for target bioproducts. Advances in the design of adsorbents, ligands and contactors have facilitated opportunities for integrated processing of unclarified feedstocks to benefit purity and yield of macromolecular products. In the face of competition from apparently simpler, yet productive, technologies (e.

View Article and Find Full Text PDF

A comparison is made of the performance of two types of adsorbent solid phases (commercially sourced Streamline composites and custom-assembled Zirblast pelliculates), derivatised with similar anion exchange chemistries and applied to the recovery of plasmid DNA from Escherichia coli extracts prepared by chemical lysis and coarse filtration. Streamline and Zirblast adsorbents were characterised by average particle diameters of 200 and 95 microm, densities of 1.16 and 3.

View Article and Find Full Text PDF

In this article, we describe a characterization method applicable to aqueous two-phase systems (ATPS) heavily loaded with complex biological feed-stocks. We also studied the partition behavior of mixtures of traceable and quantifiable radiolabeled amino acids, selected on the basis of their relative hydrophobicity A unique linear relation was established between the tie-line length (TLL: commonly determined by graphical methods) and the hydrophobic factor (HF) for ATPS comprising potassium phosphate and PEG alone, and validated for polymer molecular weights from 300 to 8000 Da in systems operated at an apparent pH value of 7.5.

View Article and Find Full Text PDF