Histone deacetylases (HDACs) are a class of enzymes that control chromatin state and influence cell fate. We evaluated the chromatin accessibility and transcriptome dynamics of zinc-containing HDACs during cell differentiation in vitro coupled with chemical perturbation to identify the role of HDACs in mesendoderm cell fate specification. Single-cell RNA sequencing analyses of HDAC expression during human pluripotent stem cell (hPSC) differentiation in vitro and mouse gastrulation in vivo reveal a unique association of HDAC1 and -3 with mesendoderm gene programs during exit from pluripotency.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
December 2021
Malaria is caused by infection with Plasmodium parasites and results in significant health and economic impacts. Malaria eradication is hampered by parasite resistance to current drugs and the lack of a widely effective vaccine. Compounds that target epigenetic regulatory proteins, such as histone deacetylases (HDACs), may lead to new therapeutic agents with a different mechanism of action, thereby avoiding resistance mechanisms to current antimalarial drugs.
View Article and Find Full Text PDFThe zinc-containing histone deacetylase enzyme HDAC7 is emerging as an important regulator of immunometabolism and cancer. Here, we exploit a cavity in HDAC7, filled by Tyr303 in HDAC1, to derive new inhibitors. Phenacetyl hydroxamates and 2-phenylbenzoyl hydroxamates bind to Zn and are 50-2700-fold more selective inhibitors of HDAC7 than HDAC1.
View Article and Find Full Text PDFCell Mol Gastroenterol Hepatol
December 2021
Background & Aims: Chronic bowel inflammation increases the risk of colon cancer; colitis-associated cancer (CAC). Thiopurine treatments are associated with a reduction in dysplasia and CAC in inflammatory bowel disease (IBD). Abnormal Wnt/β-catenin signalling is characteristic of >90% of colorectal cancers.
View Article and Find Full Text PDFAR-42 is an orally active inhibitor of histone deacetylases (HDACs) in clinical trials for multiple myeloma, leukemia, and lymphoma. It has few hydrogen bond donors and acceptors but is a chiral 2-arylbutyrate and potentially prone to racemization. We report achiral AR-42 analogues incorporating a cycloalkyl group linked via a quaternary carbon atom, with up to 40-fold increased potency against human class I HDACs (e.
View Article and Find Full Text PDFBreast cancer brain metastases remain largely incurable. Although several mouse models have been developed to investigate the genes and mechanisms regulating breast cancer brain metastasis, these models often lack clinical relevance since they require the use of immunocompromised mice and/or are poorly metastatic to brain from the mammary gland. We describe the development and characterisation of an aggressive brain metastatic variant of the 4T1 syngeneic model (4T1Br4) that spontaneously metastasises to multiple organs, but is selectively more metastatic to the brain from the mammary gland than parental 4T1 tumours.
View Article and Find Full Text PDFPeptides and proteins are not orally bioavailable in mammals, although a few peptides are intestinally absorbed in small amounts. Polypeptides are generally too large and polar to passively diffuse through lipid membranes, while most known active transport mechanisms facilitate cell uptake of only very small peptides. Systematic evaluations of peptides with molecular weights above 500 Da are needed to identify parameters that influence oral bioavailability.
View Article and Find Full Text PDFInt J Parasitol Drugs Drug Resist
April 2017
Histone deacetylase inhibitors (HDACi) are being investigated for the control of various human parasites. Here we investigate their potential as insecticides for the control of a major ecto-parasite of sheep, the Australian sheep blowfly, Lucilia cuprina. We assessed the ability of HDACi from various chemical classes to inhibit the development of blowfly larvae in vitro, and to inhibit HDAC activity in nuclear protein extracts prepared from blowfly eggs.
View Article and Find Full Text PDFSPRY domain-containing suppressor of cytokine signaling box protein (SPSB) 2-deficient macrophages have been found to exhibit prolonged expression of inducible nitric oxide synthase (iNOS) and enhanced killing of persistent pathogens, suggesting that inhibitors of the SPSB2-iNOS interaction have potential as novel anti-infectives. In this study, we describe the design, synthesis, and characterization of cyclic peptidomimetic inhibitors of the SPSB2-iNOS interaction constrained by organic linkers to improve stability and druggability. SPR, ITC, and (19)F NMR analyses revealed that the most potent cyclic peptidomimetic bound to the iNOS binding site of SPSB2 with low nanomolar affinity (KD 29 nM), a 10-fold improvement over that of the linear peptide DINNN (KD 318 nM), and showed strong inhibition of SPSB2-iNOS interaction in macrophage cell lysates.
View Article and Find Full Text PDFCyclic peptides and macrocycles have the potential to be membrane permeable and orally bioavailable, despite often not complying with the "rule of five" used in medicinal chemistry to guide the discovery of oral drugs. Here we compare solvent-dependent three-dimensional structures of three cyclic hexapeptides containing d-amino acids, prolines, and intramolecular hydrogen bonds. Conformational rigidity rather than flexibility resulted in higher membrane permeability, metabolic stability and oral bioavailability, consistent with less polar surface exposure to solvent and a reduced entropy penalty for transition between polar and nonpolar environments.
View Article and Find Full Text PDFProtease activated receptor 2 (PAR2) is an unusual G-protein coupled receptor (GPCR) involved in inflammation and metabolism. It is activated through cleavage of its N-terminus by proteases. The new N-terminus functions as a tethered ligand that folds back and intramolecularly activates PAR2, initiating multiple downstream signaling pathways.
View Article and Find Full Text PDFAccurately predicting relative binding affinities and biological potencies for ligands that interact with proteins remains a significant challenge for computational chemists. Most evaluations of docking and scoring algorithms have focused on enhancing ligand affinity for a protein by optimizing docking poses and enrichment factors during virtual screening. However, there is still relatively limited information on the accuracy of commercially available docking and scoring software programs for correctly predicting binding affinities and biological activities of structurally related inhibitors of different enzyme classes.
View Article and Find Full Text PDFDevelopment of peptide-based drugs has been severely limited by lack of oral bioavailability with less than a handful of peptides being truly orally bioavailable, mainly cyclic peptides with N-methyl amino acids and few hydrogen bond donors. Here we report that cyclic penta- and hexa-leucine peptides, with no N-methylation and five or six amide NH protons, exhibit some degree of oral bioavailability (4-17%) approaching that of the heavily N-methylated drug cyclosporine (22%) under the same conditions. These simple cyclic peptides demonstrate that oral bioavailability is achievable for peptides that fall outside of rule-of-five guidelines without the need for N-methylation or modified amino acids.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
November 2014
The use of peptides in medicine is limited by low membrane permeability, metabolic instability, high clearance, and negligible oral bioavailability. The prediction of oral bioavailability of drugs relies on physicochemical properties that favor passive permeability and oxidative metabolic stability, but these may not be useful for peptides. Here we investigate effects of heterocyclic constraints, intramolecular hydrogen bonds, and side chains on the oral bioavailability of cyclic heptapeptides.
View Article and Find Full Text PDFAntimicrob Agents Chemother
July 2012
Histone deacetylase (HDAC) enzymes posttranslationally modify lysines on histone and nonhistone proteins and play crucial roles in epigenetic regulation and other important cellular processes. HDAC inhibitors (e.g.
View Article and Find Full Text PDFTransformation of proteins and peptides to fibrillar aggregates rich in β sheets underlies many diseases, but mechanistic details of these structural transitions are poorly understood. To simulate aggregation, four equivalents of a water-soluble, α-helical (65 %) amphipathic peptide (AEQLLQEAEQLLQEL) were assembled in parallel on an oxazole-containing macrocyclic scaffold. The resulting 4α-helix bundle is monomeric and even more α helical (85 %), but it is also unstable at pH 4 and undergoes concentration-dependent conversion to β-sheet aggregates and amyloid fibrils.
View Article and Find Full Text PDFMalaria is the most lethal parasite-mediated tropical infectious disease, killing 1-2 million people each year. An emerging drug target is the enzyme Plasmodium falciparum histone deacetylase 1 (PfHDAC1). We report 26 compounds designed to bind the zinc and exterior surface around the entrance to the active site of PfHDAC1, 16 displaying potent in vitro antimalarial activity (IC(50)<100 nM) against P.
View Article and Find Full Text PDFHistone deacetylase inhibitors with anticancer or anti-inflammatory activity bind to Class I or Class I and II HDAC enzymes. Here we compare selectivity of inhibitors of a Class II HDAC enzyme (HDAC6) and find one that retains high selectivity in macrophages.
View Article and Find Full Text PDFChemotherapy in the last century was characterized by cytotoxic drugs that did not discriminate between cancerous and normal cell types and were consequently accompanied by toxic side effects that were often dose limiting. The ability of differentiating agents to selectively kill cancer cells or transform them to a nonproliferating or normal phenotype could lead to cell- and tissue-specific drugs without the side effects of current cancer chemotherapeutics. This may be possible for a new generation of histone deacetylase inhibitors derived from amino acids.
View Article and Find Full Text PDFA major chemical challenge is the structural mimicry of discontinuous protein surfaces brought into close proximity through polypeptide folding. We report the design, synthesis, and solution structure of a highly functionalized saddle-shaped macrocyclic scaffold, constrained by oxazoles and thiazoles, supporting two short peptide loops projecting orthogonally from the same face of the scaffold. This structural mimetic of two interhelical loops of cytochrome b(562) illustrates a promising approach to structurally mimicking discontinuous loops of proteins.
View Article and Find Full Text PDF[reaction: see text] Cyclopropylmethyltrimethylstannanes undergo electrophilic cyclopropane cleavage in chloroform with simple inorganic electrophiles (H(+), SO(2), I(2)) in a homologous reaction to the S(E)' cleavage of allylic stannanes. The sigma-sigma conjugation between the carbon-tin bond and cyclopropane orbitals observed spectroscopically in the parent cyclopropylmethyltrimethylstannane is responsible for a rate enhancement of ca. 10(2) toward iodinolysis, relative to comparable alkyl stannanes.
View Article and Find Full Text PDFThe regioselective syntheses and structures are reported for two tris-macrocylic compounds, each possessing two antiparallel loops on a macrocyclic scaffold constrained by two oxazoles and two thiazoles. NMR solution structures show the loops projecting from the same face of the macrocycle. Such molecules are shown to be prototypes for mimicking multiple loops of proteins.
View Article and Find Full Text PDF