Riverine sediments are important habitats for microbial activity in naturalised waterways to provide potential ecosystem services that improve stormwater quality. Yet, little is known about the sources of these sediment microbes, and the factors shaping them. This study investigated the dominant source of sediments in a tropical naturalised urban waterway, using two Bayesian methods for microbial and isotopic C/N markers concurrently.
View Article and Find Full Text PDFTerrestrial and aquatic ecosystems have specific carbon fingerprints and sequestration potential, due to the intrinsic properties of the organic matter (OM), mineral content, environmental conditions, and microbial community composition and functions. A small variation in the OM pool can imbalance the carbon dynamics that ultimately affect the climate and functionality of each ecosystem, at regional and global scales. Here, we review the factors that continuously contribute to carbon stability and lability, with particular attention to the OM formation and nature, as well as the microbial activities that drive OM aggregation, degradation and eventually greenhouse gas emissions.
View Article and Find Full Text PDFInteractions between microorganisms in mixed communities are highly complex, being either syntrophic, neutral, predatory, or competitive. Evolutionary changes can occur in the interaction dynamics between community members as they adapt to coexistence. Here, we report that the syntrophic interaction between and coculture change in their dynamics over evolutionary time.
View Article and Find Full Text PDFThe published version of this article contained an old version of Fig. 2.
View Article and Find Full Text PDFGeobacter sulfurreducens pili enable extracellular electron transfer and play a role in secretion of c-type cytochromes such as OmcZ. PilA-deficient mutants of G. sulfurreducens have previously been shown to accumulate cytochromes within their membranes.
View Article and Find Full Text PDFFree nitrous acid (FNA) exerts a broad range of antimicrobial effects on bacteria, although susceptibility varies considerably among microorganisms. Among nitrifiers found in activated sludge of wastewater treatment processes (WWTPs), nitrite-oxidizing bacteria (NOB) are more susceptible to FNA compared to ammonia-oxidizing bacteria (AOB). This selective inhibition of NOB over AOB in WWTPs bypasses nitrate production and improves the efficiency and costs of the nitrogen removal process in both the activated sludge and anaerobic ammonium oxidation (Anammox) system.
View Article and Find Full Text PDFPrevious work has demonstrated that pre-treatment of waste activated sludge (WAS) with free nitrous acid (FNA i.e. HNO) enhances the biodegradability of WAS, identified by a 20-50% increase in specific methane production in biochemical methane potential (BMP) tests.
View Article and Find Full Text PDFInterspecies electron transfer (IET) occurs in many microbial communities, enabling extracellular electron exchange for syntrophic utilization of mixed resources. Various mechanisms of IET have been characterized including direct IET (DIET) and hydrogen IET (HIT) but their evolution throughout syntrophic adaptation has not been investigated through an omics approach. A syntrophic coculture of Geobacter sulfurreducens and Pseudomonas aeruginosa was established and evolved in restricted medium.
View Article and Find Full Text PDFBiological nitrogen removal through the nitrite pathway (NH → NO → N) is favorable for wastewater treatment plants without sufficient carbon sources. This study demonstrates an innovative approach for attaining the nitrite pathway based on sludge treatment using free ammonia (FA, i.e.
View Article and Find Full Text PDFAn increase of nitrite in the domestic-strength range is generally recognized to stimulate nitrous oxide (N2O) production by ammonia-oxidizing bacteria (AOB). It was found in this study, however, that N2O emission from a mainstream nitritation system (cyclic nitrite = 25-45 mg of N/L) that was established by free nitrous acid (FNA)-based sludge treatment was not higher but much lower than that from the initial nitrifying system with full conversion of NH4(+)-N to NO3(-)-N. Under dissolved oxygen (DO) levels of 2.
View Article and Find Full Text PDFStable nitritation is a critical bottleneck for achieving autotrophic nitrogen removal using the energy-saving mainstream deammonification process. Herein we report a new strategy to wash out both the Nitrospira sp. and Nitrobacter sp.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2014
Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains of proteoglycans in basement membranes and the extracellular matrix (ECM). Heparanase is implicated in several diverse pathological processes associated with ECM degradation such as metastasis, inflammation and angiogenesis and is thus an important target for anti-cancer and anti-inflammatory drug discovery. Heparanase has been classed as belonging to the clan A glycoside hydrolase family 79 based on sequence analysis, secondary structure predictions and mutagenic analysis, and thus it has been inferred that it is a retaining glycosidase.
View Article and Find Full Text PDF