Publications by authors named "Andrew L Routh"

Coronaviruses (CoVs) maintain large RNA genomes that frequently undergoes mutations and recombination, contributing to their evolution and emergence. In this study, we find that SARS-CoV-2 has greater RNA recombination frequency than other human CoVs. In addition, coronavirus RNA recombination primarily occurs at uridine (U)-enriched RNA sequences.

View Article and Find Full Text PDF
Article Synopsis
  • * The study discusses 5 cases from 2018 to 2022 at the University of Texas Medical Branch, highlighting different forms of the infection, such as pulmonary and gastrointestinal.
  • * It stresses the importance for healthcare professionals to understand the risk factors and clinical signs of mucormycosis for quicker diagnosis and effective treatment.
View Article and Find Full Text PDF

Multi-segmented viruses often multimerize their genomic segments to ensure efficient and stoichiometric packaging of the correct genetic cargo. In the bipartite Nodaviridae family, genome heterodimerization is also observed and conserved among different species. However, the nucleotide composition and biological function for this heterodimer remain unclear.

View Article and Find Full Text PDF

The development of strategies for targeting the asymptomatic carriage of Typhi in chronic typhoid patients has suffered owing to our basic lack of understanding of the molecular mechanisms that enable the formation of . Typhi biofilms. Traditionally, studies have relied on cholesterol-attached biofilms formed by a closely related serovar, Typhimurium, to mimic multicellular Typhi communities formed on human gallstones.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 Omicron variants show over 30 new amino acid mutations, particularly in the spike protein, with three specific mutations in a less-studied region (CTS1) being the focus of this research.
  • The study created a triple mutant (YKH) that increased spike protein processing and a single N679K mutant, which resulted in lower viral replication and less disease severity.
  • Despite being a loss-of-function mutation, N679K showed enhanced replication in the upper airway compared to wild-type virus in hamsters, suggesting it may affect the virus's transmissibility.
View Article and Find Full Text PDF

Background: Genetic recombination is a tremendous source of intrahost diversity in viruses and is critical for their ability to rapidly adapt to new environments or fitness challenges. While viruses are routinely characterized using high-throughput sequencing techniques, characterizing the genetic products of recombination in next-generation sequencing data remains a challenge. Viral recombination events can be highly diverse and variable in nature, including simple duplications and deletions, or more complex events such as copy/snap-back recombination, intervirus or intersegment recombination, and insertions of host nucleic acids.

View Article and Find Full Text PDF

Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'--methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process.

View Article and Find Full Text PDF

Unlabelled: Understanding the molecular basis of innate immune evasion by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an important consideration for designing the next wave of therapeutics. Here, we investigate the role of the nonstructural protein 16 (NSP16) of SARS-CoV-2 in infection and pathogenesis. NSP16, a ribonucleoside 2'- methyltransferase (MTase), catalyzes the transfer of a methyl group to mRNA as part of the capping process.

View Article and Find Full Text PDF

Flaviviruses are small RNA viruses that are mainly transmitted via arthropod vectors and are found in tropic and sub-tropical regions. Most infections are asymptomatic (90-95%), but symptoms can be as severe as hemorrhagic fever and encephalitis. One recently emerged flavivirus is Zika virus (ZIKV), which was originally isolated from rhesus monkeys in Uganda roughly 70 years ago but has recently spread east, reaching S.

View Article and Find Full Text PDF

Motivation: Recombination is an essential driver of virus evolution and adaption, giving rise to new chimeric viruses, structural variants, sub-genomic RNAs and defective RNAs. Next-generation sequencing (NGS) of virus samples, either from experimental or clinical settings, has revealed a complex distribution of recombination events that contributes to intrahost diversity. We and others have previously developed alignment tools to discover and map these diverse recombination events in NGS data.

View Article and Find Full Text PDF

The furin cleavage site (FCS), an unusual feature in the SARS-CoV-2 spike protein, has been spotlighted as a factor key to facilitating infection and pathogenesis by increasing spike processing. Similarly, the QTQTN motif directly upstream of the FCS is also an unusual feature for group 2B coronaviruses (CoVs). The QTQTN deletion has consistently been observed in in vitro cultured virus stocks and some clinical isolates.

View Article and Find Full Text PDF

Alternative splicing (AS) is necessary for viral proliferation in host cells and a critical regulatory component of viral gene expression. Conventional RNA-seq approaches provide incomplete coverage of AS due to their short read lengths and are susceptible to biases and artifacts introduced in prevailing library preparation methodologies. Moreover, viral splicing studies are often conducted separately from host cell transcriptome analysis, precluding an assessment of the viral manipulation of host splicing machinery.

View Article and Find Full Text PDF

While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2.

View Article and Find Full Text PDF

The genomes of RNA viruses present an astonishing source of both sequence and structural diversity. From intracellular viral RNA-host interfaces to interactions between the RNA genome and structural proteins in virus particles themselves, almost the entire viral lifecycle is accompanied by a myriad of RNA-protein interactions that are required to fulfill their replicative potential. It is therefore important to characterize such rich and dynamic collections of viral RNA-protein interactions to understand virus evolution and their adaptation to their hosts and environment.

View Article and Find Full Text PDF

Adaptation of viruses to their environments occurs through the acquisition of both novel single-nucleotide variants (SNV) and recombination events including insertions, deletions, and duplications. The co-occurrence of SNVs in individual viral genomes during their evolution has been well-described. However, unlike covariation of SNVs, studying the correlation between recombination events with each other or with SNVs has been hampered by their inherent genetic complexity and a lack of bioinformatic tools.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) is a mosquito-transmitted pathogen in family Togaviridae, genus Alphavirus. Although CHIKV is well known for its ability to cause debilitating rheumatoid-like arthritis, it has been also been observed to cause cardiovascular symptoms such as arrhythmias. Here, using samples from a previous study, we sequenced RNA from serum, kidney, skeletal muscle, and cardiac muscle from CHIKV- and mock-infected IFN-αR-/- mice using two sequencing techniques to investigate heart-specific changes in virus mutational profiles and host gene expression.

View Article and Find Full Text PDF

The emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has resulted in a pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of Coronavirus Disease 2019 (COVID-19) have been hampered by the lack of robust mouse models. To overcome this barrier, we used a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2.

View Article and Find Full Text PDF

RBFOX2, which has a well-established role in alternative splicing, is linked to heart diseases. However, it is unclear whether RBFOX2 has other roles in RNA processing that can influence gene expression in muscle cells, contributing to heart disease. Here, we employ both 3'-end and nanopore cDNA sequencing to reveal a previously unrecognized role for RBFOX2 in maintaining alternative polyadenylation (APA) signatures in myoblasts.

View Article and Find Full Text PDF

Unlabelled: While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2.

View Article and Find Full Text PDF

High-throughput genomics of SARS-CoV-2 is essential to characterize virus evolution and to identify adaptations that affect pathogenicity or transmission. While single-nucleotide variations (SNVs) are commonly considered as driving virus adaption, RNA recombination events that delete or insert nucleic acid sequences are also critical. Whole genome targeting sequencing of SARS-CoV-2 is typically achieved using pairs of primers to generate cDNA amplicons suitable for next-generation sequencing (NGS).

View Article and Find Full Text PDF

Alternative splicing (AS) contributes to the diversity of the proteome by producing multiple isoforms from a single gene. Although short-read RNA-sequencing methods have been the gold standard for determining AS patterns of genes, they have a difficulty in defining full-length mRNA isoforms assembled using different exon combinations. Tropomyosin 1 (TPM1) is an actin-binding protein required for cytoskeletal functions in non-muscle cells and for contraction in muscle cells.

View Article and Find Full Text PDF

The emergence of SARS-CoV-2 has resulted in a worldwide pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of COVID-19 disease have been hampered by the lack of robust mouse models. To overcome this barrier, we utilized a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2.

View Article and Find Full Text PDF

Technical challenges remain in the sequencing of RNA viruses due to their high intra-host diversity. This bottleneck is particularly pronounced when interrogating long-range co-evolved genetic interactions given the read-length limitations of next-generation sequencing platforms. This has hampered the direct observation of these genetic interactions that code for protein-protein interfaces with relevance in both drug and vaccine development.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-a new coronavirus that has led to a worldwide pandemic-has a furin cleavage site (PRRAR) in its spike protein that is absent in other group-2B coronaviruses. To explore whether the furin cleavage site contributes to infection and pathogenesis in this virus, we generated a mutant SARS-CoV-2 that lacks the furin cleavage site (ΔPRRA). Here we report that replicates of ΔPRRA SARS-CoV-2 had faster kinetics, improved fitness in Vero E6 cells and reduced spike protein processing, as compared to parental SARS-CoV-2.

View Article and Find Full Text PDF

Recombination is proposed to be critical for coronavirus (CoV) diversity and emergence of SARS-CoV-2 and other zoonotic CoVs. While RNA recombination is required during normal CoV replication, the mechanisms and determinants of CoV recombination are not known. CoVs encode an RNA proofreading exoribonuclease (nsp14-ExoN) that is distinct from the CoV polymerase and is responsible for high-fidelity RNA synthesis, resistance to nucleoside analogues, immune evasion, and virulence.

View Article and Find Full Text PDF