We have developed methods for isolating proteoglycans and glycosaminoglycans from archaeological bones and teeth. These methods have been previously published (Coulson- Thomas , 2015 ) and are described here in more detail. In the case of glycosaminoglycans, the method was a previously described method ( Nader , 1999 ) which we optimized for archeological samples.
View Article and Find Full Text PDFBone tissue is mineralized dense connective tissue consisting mainly of a mineral component (hydroxyapatite) and an organic matrix comprised of collagens, non-collagenous proteins and proteoglycans (PGs). Extracellular matrix proteins and PGs bind tightly to hydroxyapatite which would protect these molecules from the destructive effects of temperature and chemical agents after death. DNA and proteins have been successfully extracted from archaeological skeletons from which valuable information has been obtained; however, to date neither PGs nor glycosaminoglycan (GAG) chains have been studied in archaeological skeletons.
View Article and Find Full Text PDFMorphological and ultrastructural data from archaeological human bones are scarce, particularly data that have been correlated with information on the preservation of molecules such as DNA. Here we examine the bone structure of macroscopically well-preserved medieval human skeletons by transmission electron microscopy and immunohistochemistry, and the quantity and quality of DNA extracted from these skeletons. DNA technology has been increasingly used for analyzing physical evidence in archaeological forensics; however, the isolation of ancient DNA is difficult since it is highly degraded, extraction yields are low and the co-extraction of PCR inhibitors is a problem.
View Article and Find Full Text PDFThe stroma surrounding tumors can either restrict or promote tumor growth and progression, and both the cellular and non-cellular components of the stroma play an active role. The cellular components in the surrounding stroma include tumor-associated fibroblasts, host tissue cells and immune cells. The non-cellular components, which form the extracellular matrix (ECM) scaffold, include proteoglycans, collagen, proteinases, growth factors and cytokines.
View Article and Find Full Text PDF