Publications by authors named "Andrew L Nevai"

Dengue is a re-emergent vector-borne disease affecting large portions of the world's population living in the tropics and subtropics. The virus is transmitted through the bites of female Aedes aegypti mosquitoes, and it is widely believed that these bites occur primarily in the daytime. The transmission of dengue is a complicated process, and one of the main sources of this complexity is due to the movement of people, e.

View Article and Find Full Text PDF

The influence of a resource subsidy on predator-prey interactions is examined using a mathematical model. The model arises from the study of a biological system involving arctic foxes (predator), lemmings (prey), and seal carcasses (subsidy). In one version of the model, the predator, prey and subsidy all occur in the same location; in a second version, the predator moves between two patches, one containing only the prey and the other containing only the subsidy.

View Article and Find Full Text PDF

Long-distance dispersal (LDD) events, although rare for most plant species, can strongly influence population and community dynamics. Animals function as a key biotic vector of seeds and thus, a mechanistic and quantitative understanding of how individual animal behaviors scale to dispersal patterns at different spatial scales is a question of critical importance from both basic and applied perspectives. Using a diffusion-theory based analytical approach for a wide range of animal movement and seed transportation patterns, we show that the scale (a measure of local dispersal) of the seed dispersal kernel increases with the organisms' rate of movement and mean seed retention time.

View Article and Find Full Text PDF

We introduce a pair of compartment models for the honey bee nest-site selection process that lend themselves to analytic methods. The first model represents a swarm of bees deciding whether a site is viable, and the second characterizes its ability to select between two viable sites. We find that the one-site assessment process has two equilibrium states: a disinterested equilibrium (DE) in which the bees show no interest in the site and an interested equilibrium (IE) in which bees show interest.

View Article and Find Full Text PDF

A Kolmogorov-type competition model featuring allocation profiles, gain functions, and cost parameters is examined. For plant species that compete for sunlight according to the canopy partitioning model [R.R.

View Article and Find Full Text PDF

A global method of nullcline endpoint analysis is employed to determine the outcome of competition for sunlight between two hypothetical plant species with clonal growth form that differ solely in the height at which they place their leaves above the ground. This difference in vertical leaf placement, or canopy partitioning, produces species differences in sunlight energy capture and stem metabolic maintenance costs. The competitive interaction between these two species is analyzed by considering a special case of a canopy partitioning model (RR Vance and AL Nevai, J.

View Article and Find Full Text PDF

Decision makers who minimize costly errors should flexibly adjust the way they trade off competing demands, depending on their current state. We explore how state (amount of hoarded food) affects willingness to take extra predation risk to obtain larger food rewards, particularly in animals that may overemphasize safety. Assuming a sigmoid fitness function, we explore how a supplement in state influences this willingness trade danger for food energy.

View Article and Find Full Text PDF

We examine the influence of canopy partitioning on the outcome of competition between two plant species that interact only by mutually shading each other. This analysis is based on a Kolmogorov-type canopy partitioning model for plant species with clonal growth form and fixed vertical leaf profiles (Vance and Nevai in J. Theor.

View Article and Find Full Text PDF

Can a difference in the heights at which plants place their leaves, a pattern we call canopy partitioning, make it possible for two competing plant species to coexist? To find out, we examine a model of clonal plants living in a nonseasonal environment that relates the dynamical behavior and competitive abilities of plant populations to the structural and functional features of the plants that form them. This examination emphasizes whole plant performance in the vertical light gradient caused by self-shading. This first of three related papers formulates a prototype single species Canopy Structure Model from biological first principles and shows how all plant properties work together to determine population persistence and equilibrium abundance.

View Article and Find Full Text PDF