Publications by authors named "Andrew L Bowers"

Deficits in basal ganglia-based inhibitory and timing circuits along with sensorimotor internal modeling mechanisms are thought to underlie stuttering. However, much remains to be learned regarding the precise manner how these deficits contribute to disrupting both speech and cognitive functions in those who stutter. Herein, we examine the suitability of electroencephalographic (EEG) mu rhythms for addressing these deficits.

View Article and Find Full Text PDF

: To determine whether changes in sensorimotor control resulting from speaking conditions that induce fluency in people who stutter (PWS) can be measured using electroencephalographic (EEG) mu rhythms in neurotypical speakers. : Non-stuttering (NS) adults spoke in one control condition (solo speaking) and four experimental conditions (choral speech, delayed auditory feedback (DAF), prolonged speech and pseudostuttering). Independent component analysis (ICA) was used to identify sensorimotor μ components from EEG recordings.

View Article and Find Full Text PDF

Sensorimotor integration (SMI) across the dorsal stream enables online monitoring of speech. Jenson et al. (2014) used independent component analysis (ICA) and event related spectral perturbation (ERSP) analysis of electroencephalography (EEG) data to describe anterior sensorimotor (e.

View Article and Find Full Text PDF

Activity in anterior sensorimotor regions is found in speech production and some perception tasks. Yet, how sensorimotor integration supports these functions is unclear due to a lack of data examining the timing of activity from these regions. Beta (~20 Hz) and alpha (~10 Hz) spectral power within the EEG μ rhythm are considered indices of motor and somatosensory activity, respectively.

View Article and Find Full Text PDF

Oscillatory models of speech processing have proposed that rhythmic cortical oscillations in sensory and motor regions modulate speech sound processing from the bottom-up via phase reset at low frequencies (3-10 Hz) and from the top-down via the disinhibition of alpha/beta rhythms (8-30 Hz). To investigate how the proposed rhythms mediate perceptual performance, electroencephalographic (EEG) was recorded while participants passively listened to or actively identified speech and tone-sweeps in a two-force choice in noise discrimination task presented at high and low signal-to-noise ratios. EEG data were decomposed using independent component analysis and clustered across participants using principle component methods in EEGLAB.

View Article and Find Full Text PDF

Background: People who stutter are often acutely aware that their speech disruptions, halted communication, and aberrant struggle behaviours evoke reactions in communication partners. Considering that eye gaze behaviours have emotional, cognitive, and pragmatic overtones for communicative interactions and that previous studies have indicated increased physiological arousal in listeners in response to stuttering, it was hypothesized that stuttered speech incurs increased gaze aversion relative to fluent speech. The possible importance in uncovering these visible reactions to stuttering is that they may contribute to the social penalty associated with stuttering.

View Article and Find Full Text PDF