The folylpolyglutamate synthetase (FPGS) enzyme of Escherichia coli differs from that of Lactobacillus casei in having dihydrofolate synthetase activity, which catalyzes the production of dihydrofolate from dihydropteroate. The present study undertook mutagenesis to identify structural elements that are directly responsible for the functional differences between the two enzymes. The amino terminal domain (residues 1-287) of the E.
View Article and Find Full Text PDFBased upon the three-dimensional structure of Lactobacillus casei folylpolyglutamate synthetase (FPGS), site-directed mutagenesis studies were performed on three residues associated with the ATPase site: Gly51, Ser52 and Ser73. Gly51 and Ser52 are at the end of the P-loop, which is involved in triphosphate binding. A G51S mutant enzyme and a G51S/S52T double-mutant enzyme were made in order to alter the FPGS P-loop to more closely resemble the sequences found in other ATPase and GTPase enzymes.
View Article and Find Full Text PDFThe mechanisms mediating responses to glycine withdrawal in budding yeast were studied using a genome-wide profiling approach. A striking pattern of repressed expression of genes with an enrichment for those involved in one-carbon metabolism and AMP biosynthesis was revealed. Sequence analysis of the promoters for the most severely repressed genes identified a conserved sequence, TGACTC, a known binding site for the transcription factors Gcn4p and Bas1p.
View Article and Find Full Text PDFFolylpolyglutamate synthetase (FPGS) catalyzes the addition of glutamate to folate derivatives to form folate polyglutamates. FPGS is essential for folate biosynthesis in bacteria and retention of folate pools in eukaryotes. X-ray crystallographic analyses of binary and ternary complexes of Lactobacillus casei FPGS suggest that binding of folate triggers a conformational change that activates FPGS.
View Article and Find Full Text PDFSite-directed mutagenesis was performed on Glu143, an essential amino acid in Lactobacillus casei folylpolyglutamate synthetase (FPGS) and the structurally equivalent residue, Glu146, in Escherichia coli FPGS. Glu143 is positioned near the P-loop and interacts with the Mg(2+) of Mg NTP-binding proteins. We have solved the structure of the E143A mutant of L.
View Article and Find Full Text PDF