Publications by authors named "Andrew Kuplic"

The mechanisms for the loss in limb muscle power output in old (60-79 yr) and very old (≥80 yr) adults and whether the mechanisms differ between men and women are not well understood. We compared maximal peak power of the knee extensor muscles between young, old, and very old men and women and identified the neural and muscular factors contributing to the age-related differences in power. Thirty-one young (22.

View Article and Find Full Text PDF

The mechanisms for the loss in limb muscle power in old (60-79 years) and very old (≥80 years) adults and whether the mechanisms differ between men and women are not well-understood. We compared maximal power of the knee extensor muscles between young, old, and very old men and women and identified the neural and muscular factors contributing to the age-related loss of power. 31 young (22.

View Article and Find Full Text PDF

The mechanisms for the age-related increase in fatigability during high-velocity contractions in old and very old adults (≥80 yr) are unresolved. Moreover, whether the increased fatigability with advancing age and the underlying mechanisms differ between men and women is not known. The purpose of this study was to quantify the fatigability of knee extensor muscles and identify the mechanisms of fatigue in 30 young (22.

View Article and Find Full Text PDF

Aging is associated with reduced neuromuscular function, which may be due in part to altered corticospinal excitability. Regular physical activity (PA) may ameliorate these age-related declines, but the influence of PA on corticospinal excitability is unknown. The purpose of this study was to determine the influence of age, sex, and PA on corticospinal excitability by comparing the stimulus-response curves of motor evoked potentials (MEP) in 28 young (22.

View Article and Find Full Text PDF