Neurosci Biobehav Rev
December 2024
Blindness or deafness can significantly influence sensory abilities in intact modalities, affecting communication, orientation and navigation. Explanations for why certain abilities are enhanced and others degraded include: crossmodal cortical reorganization enhances abilities by providing additional neural processing resources; and sensory processing is impaired for tasks where calibration from the normally intact sense is required for good performance. However, these explanations are often specific to tasks or modalities, not accounting for why task-dependent enhancement or degradation are observed.
View Article and Find Full Text PDFSignificance: It is important to know whether early-onset vision loss and late-onset vision loss are associated with differences in the estimation of distances of sound sources within the environment. People with vision loss rely heavily on auditory cues for path planning, safe navigation, avoiding collisions, and activities of daily living.
Purpose: Loss of vision can lead to substantial changes in auditory abilities.
The distance of sound sources relative to the body can be estimated using acoustic level and direct-to-reverberant ratio cues. However, the ability to do this may differ for sounds that are in front compared to behind the listener. One reason for this is that vision, which plays an important role in calibrating auditory distance cues early in life, is unavailable for rear space.
View Article and Find Full Text PDFVisual spatial information plays an important role in calibrating auditory space. Blindness results in deficits in a number of auditory abilities, which have been explained in terms of the hypothesis that visual information is needed to calibrate audition. When judging the size of a novel room when only auditory cues are available, normally sighted participants may use the location of the farthest sound source to infer the nearest possible distance of the far wall.
View Article and Find Full Text PDFWhen vision is unavailable, auditory level and reverberation cues provide important spatial information regarding the environment, such as the size of a room. We investigated how room-size estimates were affected by stimulus type, level, and reverberation. In Experiment 1, 15 blindfolded participants estimated room size after performing a distance bisection task in virtual rooms that were either anechoic (with level cues only) or reverberant (with level and reverberation cues) with a relatively short reverberation time of = 400 milliseconds.
View Article and Find Full Text PDFUntil recently, a commonly held view was that blindness resulted in enhanced auditory abilities, underpinned by the beneficial effects of cross-modal neuroplasticity. This viewpoint has been challenged by studies showing that blindness results in poorer performance for some auditory spatial tasks. It is now clear that visual loss does not result in a general increase or decrease in all auditory abilities.
View Article and Find Full Text PDFBlindness leads to substantial enhancements in many auditory abilities, and deficits in others. It is unknown how severe visual losses need to be before changes in auditory abilities occur, or whether the relationship between severity of visual loss and changes in auditory abilities is proportional and systematic. Here we show that greater severity of visual loss is associated with increased auditory judgments of distance and room size.
View Article and Find Full Text PDFAlthough vision is important for calibrating auditory spatial perception, it only provides information about frontal sound sources. Previous studies of blind and sighted people support the idea that azimuthal spatial bisection in frontal space requires visual calibration, while detection of a change in azimuth (minimum audible angle, MAA) does not. The influence of vision on the ability to map frontal, lateral and back space has not been investigated.
View Article and Find Full Text PDFIt is widely accepted that vision plays a key role in the development of spatial skills of the other senses. Recent works have shown that blindness is often associated with auditory spatial deficits. The majority of previous studies have focused on understanding the representation of the upper frontal body space where vision and actions have a central role in mapping the space, however less research has investigated the back space and the space around the legs.
View Article and Find Full Text PDFWe assessed how visually impaired (VI) people perceived their own auditory abilities using an established hearing questionnaire, the Speech, Spatial, and Qualities of Hearing Scale (SSQ), that was adapted to make it relevant and applicable to VI individuals by removing references to visual aspects while retaining the meaning of the original questions. The resulting questionnaire, the SSQvi, assessed perceived hearing ability in diverse situations including the ability to follow conversations with multiple speakers, assessing how far away a vehicle is, and the ability to perceptually segregate simultaneous sounds. The SSQvi was administered to 33 VI and 33 normally sighted participants.
View Article and Find Full Text PDFPerformance for an obstacle circumvention task was assessed under conditions of visual, auditory only (using echolocation) and tactile (using a sensory substitution device, SSD) guidance. A Vicon motion capture system was used to measure human movement kinematics objectively. Ten normally sighted participants, 8 blind non-echolocators, and 1 blind expert echolocator navigated around a 0.
View Article and Find Full Text PDFCompared to sighted listeners, blind listeners often display enhanced auditory spatial abilities such as localization in azimuth. However, less is known about whether blind humans can accurately judge distance in extrapersonal space using auditory cues alone. Using virtualization techniques, we show that auditory spatial representations of the world beyond the peripersonal space of blind listeners are compressed compared to those for normally sighted controls.
View Article and Find Full Text PDFA method (called binaural enhancement) for enhancing interaural level differences at low frequencies, based on estimates of interaural time differences, was developed and evaluated. Five conditions were compared, all using simulated hearing-aid processing: (1) Linear amplification with frequency-response shaping; (2) binaural enhancement combined with linear amplification and frequency-response shaping; (3) slow-acting four-channel amplitude compression with independent compression at the two ears (AGC4CH); (4) binaural enhancement combined with four-channel compression (BE-AGC4CH); and (5) four-channel compression but with the compression gains synchronized across ears. Ten hearing-impaired listeners were tested, and gains and compression ratios for each listener were set to match targets prescribed by the CAM2 fitting method.
View Article and Find Full Text PDFAccurate motor control is required when walking around obstacles in order to avoid collisions. When vision is unavailable, sensory substitution can be used to improve locomotion through the environment. Tactile sensory substitution devices (SSDs) are electronic travel aids, some of which indicate the distance of an obstacle using the rate of vibration of a transducer on the skin.
View Article and Find Full Text PDFThis study investigated how effectively audition can be used to guide navigation around an obstacle. Ten blindfolded normally sighted participants navigated around a 0.6 × 2 m obstacle while producing self-generated mouth click sounds.
View Article and Find Full Text PDFAuditory distance perception plays a major role in spatial awareness, enabling location of objects and avoidance of obstacles in the environment. However, it remains under-researched relative to studies of the directional aspect of sound localization. This review focuses on the following four aspects of auditory distance perception: cue processing, development, consequences of visual and auditory loss, and neurological bases.
View Article and Find Full Text PDFThere is currently considerable interest in the consequences of loss in one sensory modality on the remaining senses. Much of this work has focused on the development of enhanced auditory abilities among blind individuals, who are often able to use sound to navigate through space. It has now been established that many blind individuals produce sound emissions and use the returning echoes to provide them with information about objects in their surroundings, in a similar manner to bats navigating in the dark.
View Article and Find Full Text PDFBlind participants greatly rely on sound for spatial information regarding the surrounding environment. It is not yet established whether lack of vision to calibrate audition in far space affects blind participants' internal spatial representation of acoustic room size. Furthermore, blind participants may rely more on farthest distance estimates to sound sources compared with sighted participants when perceiving room size.
View Article and Find Full Text PDFThe study assessed the ability of the central nervous system (CNS) to use echoic information from sensory substitution devices (SSDs) to rotate the shoulders and safely pass through apertures of different width. Ten visually normal participants performed this task with full vision, or blindfolded using an SSD to obtain information regarding the width of an aperture created by two parallel panels. Two SSDs were tested.
View Article and Find Full Text PDFThe study investigated how listeners used level and direct-to-reverberant ratio (D/R) cues to discriminate distances to virtual sound sources. Sentence pairs were presented at virtual distances in simulated rooms that were either reverberant or anechoic. Performance on the basis of level was generally better than performance based on D/R.
View Article and Find Full Text PDFTotally blind listeners often demonstrate better than normal capabilities when performing spatial hearing tasks. Accurate representation of three-dimensional auditory space requires the processing of available distance information between the listener and the sound source; however, auditory distance cues vary greatly depending upon the acoustic properties of the environment, and it is not known which distance cues are important to totally blind listeners. Our data show that totally blind listeners display better performance compared to sighted age-matched controls for distance discrimination tasks in anechoic and reverberant virtual rooms simulated using a room-image procedure.
View Article and Find Full Text PDFThe spectral resolution of the binaural system was measured using a tone-detection task in a binaural analog of the notched-noise technique. Three listeners performed 2-interval, 2-alternative, forced choice tasks with a 500-ms out-of-phase signal within 500 ms of broadband masking noise consisting of an "outer" band of either interaurally uncorrelated or anticorrelated noise, and an "inner" band of interaurally correlated noise. Three signal frequencies were tested (250, 500, and 750 Hz), and the asymmetry of the filter was measured by keeping the signal at a constant frequency and moving the correlated noise band relative to the signal.
View Article and Find Full Text PDFPrevious work on ocular-following emphasises the accuracy of tracking eye movements. However, a more complete understanding of oculomotor control should account for variable error as well. We identify two forms of precision: 'shake', occurring over shorter timescales; 'drift', occurring over longer timescales.
View Article and Find Full Text PDFFour experiments measured discrimination of interaural time delay (ITD) thresholds for broadband noise in the presence of masking noise of the same bandwidth as the target (0.1-3 kHz for experiments 1-3 and 0-10 kHz for experiment 4). In experiments 1-3, listeners performed interaural two-interval two-alternative forced-choice (2I-2AFC) delay discrimination tasks with stimuli composed of delayed and masking noises mixed in proportions of delayed noise ranging between 1 and 0.
View Article and Find Full Text PDFBinaural temporal resolution was measured using the discrimination of brief interaural time delays (ITDs). In experiment 1, three listeners performed a 2I-2AFC, ITD-discrimination procedure. ITD changes of 8 to 1024micros were applied to brief probe noises.
View Article and Find Full Text PDF