Active nematics is an emerging paradigm for characterizing biological systems. One aspect of particularly intense focus is the role active nematic defects play in these systems, as they have been found to mediate a growing number of biological processes. Accurately detecting and classifying these defects in biological systems is, therefore, of vital importance to improving our understanding of such processes.
View Article and Find Full Text PDFPhys Rev Lett
February 2022
How can a collection of motile cells, each generating contractile nematic stresses in isolation, become an extensile nematic at the tissue level? Understanding this seemingly contradictory experimental observation, which occurs irrespective of whether the tissue is in the liquid or solid states, is not only crucial to our understanding of diverse biological processes, but is also of fundamental interest to soft matter and many-body physics. Here, we resolve this cellular to tissue level disconnect in the small fluctuation regime by using analytical theories based on hydrodynamic descriptions of confluent tissues, in both liquid and solid states. Specifically, we show that a collection of microscopic constituents with no inherently nematic extensile forces can exhibit active extensile nematic behavior when subject to polar fluctuating forces.
View Article and Find Full Text PDF