J Opt Soc Am A Opt Image Sci Vis
April 2023
We implement a limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization of phase-only computer-generated hologram for a multi-depth three-dimensional (3D) target. Instead of computing the full 3D reconstruction of the hologram, we use a novel method using L-BFGS with sequential slicing (SS) for partial evaluation of the hologram during optimization that only computes loss for a single slice of the reconstruction at every iteration. We demonstrate that its ability to record curvature information enables L-BFGS to have good quality imbalance suppression under the SS technique.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
November 2022
The effects of time-varying measurement noise on transmission matrix acquisition processes are considered for the first time, to our knowledge. Dominant noise sources are discussed, and the noise properties of a typical interferometer system used for characterizing a multimode fiber transmission matrix are quantified. It is demonstrated that an appropriate choice of measurement basis allows a more accurate transmission matrix to be more quickly obtained in the presence of measurement noise.
View Article and Find Full Text PDFUnderstanding and improving the perceived quality of reconstructed images is key to developing computer-generated holography algorithms for high-fidelity holographic displays. However, current algorithms are typically optimized using mean squared error, which is widely criticized for its poor correlation with perceptual quality. In our work, we present a comprehensive analysis of employing contemporary image quality metrics (IQM) as loss functions in the hologram optimization process.
View Article and Find Full Text PDFSpatial light modulators (SLMs) are key research tools in several contemporary applied optics research domains. In this paper, we present the argument that an open platform for interacting with SLMs would dramatically increase their accessibility to researchers. We introduce HoloBlade, an open-hardware implementation of an SLM driver-stack, and provide a detailed exposition of HoloBlade's architecture, key components, and detailed design.
View Article and Find Full Text PDFThe generation of computer-generated holograms (CGHs) requires a significant amount of computational power. To accelerate the process, highly parallel field-programmable gate arrays (FPGAs) are deemed to be a promising computing platform to implement non-iterative hologram generation algorithms. In this paper, we present a cost-optimized heterogeneous FPGA architecture based on a one-step phase retrieval algorithm for CGH generation.
View Article and Find Full Text PDF