Publications by authors named "Andrew K Vershon"

Transcriptome profiling studies have recently uncovered a large number of noncoding RNA transcripts (ncRNAs) in eukaryotic organisms, and there is growing interest in their role in the cell. For example, in haploid Saccharomyces cerevisiae cells, the expression of an overlapping antisense ncRNA, referred to here as RME2 (Regulator of Meiosis 2), prevents IME4 expression. In diploid cells, the a1-α2 complex represses the transcription of RME2, allowing IME4 to be induced during meiosis.

View Article and Find Full Text PDF

Sir2 and Hst1 are NAD(+)-dependent histone deacetylases of budding yeast that are related by strong sequence similarity. Nevertheless, the two proteins promote two mechanistically distinct forms of gene repression. Hst1 interacts with Rfm1 and Sum1 to repress the transcription of specific middle-sporulation genes.

View Article and Find Full Text PDF

The yeast Mcm1 protein is a member of the MADS box family of transcription factors that interacts with several cofactors to differentially regulate genes involved in cell-type determination, mating, cell cycle control and arginine metabolism. Residues 18 to 96 of the protein, which form the core DNA-binding domain of Mcm1, are sufficient to carry out many Mcm1-dependent functions. However, deletion of residues 2 to 17, which form the nonessential N-terminal (NT) arm, confers a salt-sensitive phenotype, suggesting that the NT arm is required for the activation of salt response genes.

View Article and Find Full Text PDF

The HO gene in Saccharomyces cerevisiae is regulated by a large and complex promoter that is similar to promoters in higher order eukaryotes. Within this promoter are 10 potential binding sites for the a1-alpha2 heterodimer, which represses HO and other haploid-specific genes in diploid yeast cells. We have determined that a1-alpha2 binds to these sites with differing affinity, and that while certain strong-affinity sites are crucial for repression of HO, some of the weak-affinity sites are dispensable.

View Article and Find Full Text PDF

Sporulation in the yeast Saccharomyces cerevisiae is a complex and tightly regulated pathway that involves the induction of a large number of genes. We have identified MRPS17 in a cDNA library enriched for sporulation-specific genes. Homology searches show that the first one-third of Mrps17 has strong sequence similarity to bacterial S17 proteins, suggesting that Mrps17 is a potential mitochondrial ribosomal protein.

View Article and Find Full Text PDF

Background: The analysis of gene expression using DNA microarrays provides genome wide profiles of the genes controlled by the presence or absence of a specific transcription factor. However, the question arises of whether a change in the level of transcription of a specific gene is caused by the transcription factor acting directly at the promoter of the gene or through regulation of other transcription factors working at the promoter.

Results: To address this problem we have devised a computational method that combines microarray expression and site preference data.

View Article and Find Full Text PDF

The Ndt80 protein of the yeast Saccharomyces cerevisiae is the founding member of a new sub-family of proteins in the Ig-fold superfamily of transcription factors. The crystal structure of Ndt80 bound to DNA shows that it makes contacts through several loops on one side of the protein that connect beta-strands which form the beta-sandwich fold common to proteins in this superfamily. However, the DNA-binding domain of Ndt80 is considerably larger than many other members of the Ig-fold superfamily and it appears to make a larger number of contacts with the DNA than these proteins.

View Article and Find Full Text PDF

The yeast Mcm1 protein is a founding member of the MADS-box family of transcription factors that is involved in the regulation of diverse sets of genes through interactions with distinct cofactor proteins. Mcm1 interacts with the Matalpha1 protein to activate the expression of the alpha-cell type-specific genes. To understand the requirement of the cofactor alpha1 for Mcm1-alpha1-dependent transcriptional activation we analyzed the recruitment of Mcm1 to the promoters of alpha-specific genes in vivo and found that Mcm1 is able to bind to the promoters of alpha-specific genes in the absence of alpha1.

View Article and Find Full Text PDF

Sfp1, an unusual zinc finger protein, was previously identified as a gene that, when overexpressed, imparted a nuclear localization defect. sfp1 cells have a reduced size and a slow growth phenotype. In this study we show that SFP1 plays a role in ribosome biogenesis.

View Article and Find Full Text PDF

In the yeast Saccharomyces cerevisiae, diploid strains carrying homozygous hta1-htb1Delta mutations express histone H2A-H2B dimers at a lower level than do wild-type cells. Although this mutation has only minor effects on mitotic growth, it causes an arrest in sporulation prior to the first meiotic division. In this report, we show that the hta1-htb1Delta mutant exhibits reduced expression of early and middle-sporulation-specific genes and that the meiotic arrest of the hta1-htb1Delta mutant can be partially bypassed by overexpression of IME1.

View Article and Find Full Text PDF

A key transition in meiosis is the exit from prophase and entry into the nuclear divisions, which in the yeast Saccharomyces cerevisiae depends upon induction of the middle sporulation genes. Ndt80 is the primary transcriptional activator of the middle sporulation genes and binds to a DNA sequence element termed the middle sporulation element (MSE). Sum1 is a transcriptional repressor that binds to MSEs and represses middle sporulation genes during mitosis and early sporulation.

View Article and Find Full Text PDF

Transcriptional repression is often correlated with the alteration of chromatin structure through modifications of the nucleosomes in the promoter region, such as by deacetylation of the N-terminal histone tails. This is presumed to make the promoter region inaccessible to other regulatory factors and the general transcription machinery. To accomplish this, histone deacetylases are recruited to specific promoters via DNA-binding proteins and tethering factors.

View Article and Find Full Text PDF

The Ndt80 protein is a transcriptional activator that plays a key role in the progression of the meiotic divisions in the yeast Saccharomyces cerevisiae. Ndt80 is strongly induced during the middle stages of the sporulation pathway and binds specifically to a promoter element called the MSE to activate transcription of genes required for the meiotic divisions. Here, the preliminary structural and functional studies to characterize the DNA-binding activity of this protein are reported.

View Article and Find Full Text PDF

Ndt80 is a transcriptional activator required for meiosis in the yeast Saccharomyces cerevisiae. Here, we report the crystal structure at 2.3 A resolution of the DNA-binding domain of Ndt80 experimentally phased by using the anomalous and isomorphous signal from a single ordered Se atom per molecule of 272-aa residues.

View Article and Find Full Text PDF

Arg80 and Mcm1, two members of the MADS box family of DNA-binding proteins, regulate the metabolism of arginine in association with Arg81, the arginine sensor. In spite of the high degree of sequence conservation between the MADS box domains of the Arg80 and Mcm1 proteins (56 of 81 amino acids), these domains are not interchangeable. To determine which amino acids define the specificity of Arg80, we swapped the amino acids in each secondary-structure element of the Arg80 MADS box domain with the corresponding amino acids of Mcm1 and assayed the ability of these chimeras to regulate arginine-metabolic genes in place of the wild-type Arg80.

View Article and Find Full Text PDF

Triply mutated MATalpha2 protein, alpha2-3A, in which all three major groove-contacting residues are mutated to alanine, is defective in binding DNA alone or in complex with Mcm1 yet binds with MATa1 with near wild-type affinity and specificity. To gain insight into this unexpected behavior, we determined the crystal structure of the a1/alpha2-3A/DNA complex. The structure shows that the triple mutation causes a collapse of the alpha2-3A/DNA interface that results in a reorganized set of alpha2-3A/DNA contacts, thereby enabling the mutant protein to recognize the wild-type DNA sequence.

View Article and Find Full Text PDF

The yeast Mcm1 protein is a member of the MADS box family of transcriptional regulatory factors, a class of DNA-binding proteins that control numerous cellular and developmental processes in yeast, Drosophila melanogaster, plants, and mammals. Although these proteins bind DNA on their own, they often combine with different cofactors to bind with increased affinity and specificity to their target sites. To understand how this class of proteins functions, we have made a series of alanine substitutions in the MADS box domain of Mcm1 and examined the effects of these mutations in combination with its cofactors that regulate mating in yeast.

View Article and Find Full Text PDF

We have engineered enhanced DNA-binding function into the a1 homeodomain by making changes in a loop distant from the DNA-binding surface. Comparison of the free and bound a1 structures suggested a mechanism linking van der Waals stacking changes in this loop to the ordering of a final turn in the DNA-binding helix of a1. Inspection of the protein sequence revealed striking differences in amino acid identity at positions 24 and 25 compared to related homeodomain proteins.

View Article and Find Full Text PDF