Long-term (1981-2011) satellite climate data records of clouds and aerosols are used to investigate the aerosol-cloud interaction of marine water cloud from a climatology perspective. Our focus is on identifying the regimes and regions where the aerosol indirect effects (AIEs) are evident in long-term averages over the global oceans through analyzing the correlation features between aerosol loading and the key cloud variables including cloud droplet effective radius (CDER), cloud optical depth (COD), cloud water path (CWP), cloud top height (CTH), and cloud top temperature (CTT). An aerosol optical thickness (AOT) range of 0.
View Article and Find Full Text PDFIn this paper, we used cloud imagery from a NASA field experiment in conjunction with three-dimensional radiative transfer calculations to show that cloud spatial structure manifests itself as a spectral signature in shortwave irradiance fields - specifically in transmittance and net horizontal photon transport in the visible and near-ultraviolet wavelength range. We found a robust correlation between the magnitude of net horizontal photon transport () and its spectral dependence (slope), which is scale-invariant and holds for the entire pixel population of a domain. This was surprising at first given the large degree of spatial inhomogeneity.
View Article and Find Full Text PDFObservations and models show that northern tropical Atlantic surface temperatures are sensitive to regional changes in stratospheric volcanic and tropospheric mineral aerosols. However, it is unknown whether the temporal variability of these aerosols is a key factor in the evolution of ocean temperature anomalies. We used a simple physical model, incorporating 26 years of satellite data, to estimate the temperature response of the ocean mixed layer to changes in aerosol loadings.
View Article and Find Full Text PDF