The insular cortex is a multifunctional and richly connected region of the cerebral cortex, critical in the neural integration of external stimuli and internal signals. Well-served for this role by a large network of afferent and efferent connections, the mouse insula can be simplified into an anterior, medial and posterior portion. Here we focus on the medial subregion, a once over-looked area that has gained recent attention for its involvement in an array of behaviours.
View Article and Find Full Text PDFDementia poses major health challenges worldwide, yet current treatments are faced with issues of efficacy and toxicity. Deep brain stimulation (DBS) is a promising non-pharmacological treatment for dementia, but most DBS studies use young healthy animals, which may not be aetiologically relevant. In this study, we used an aged rat model in which cognitive decline occurs through a natural ageing process.
View Article and Find Full Text PDFDespite the prevalence of methamphetamine (meth) use disorder, research on meth is disproportionately scarce compared to research on other illicit drugs. Existing evidence highlights cognitive deficits as an impediment against daily function and treatment of chronic meth use. Similar deficits are also observed in schizophrenia, and this review therefore draws on schizophrenia research by examining similarities and differences between the two disorders on cognition and related neural findings.
View Article and Find Full Text PDFBackground: There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core considered hallmarks of addiction.
View Article and Find Full Text PDFCerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard.
View Article and Find Full Text PDFThe purposeful inhalation of volatile solvents, such as toluene, to induce self-intoxication is prevalent, particularly within adolescent populations. Chronic misuse results in cognitive and neurobiological impairments, as well as an increased risk for addictive behaviours in adulthood. Toluene-induced neuroadaptations within mesocorticolimbic circuitry are thought, in part, to mediate some of the adverse outcomes of toluene misuse, however our understanding of the neuroadaptive processes remains equivocal.
View Article and Find Full Text PDFOrexins (hypocretins) are hypothalamic neuropeptides that innervate the entire neuraxis, including the prelimbic cortex and ventral tegmental area and have been implicated in ethanol-seeking behaviour. The present study aimed to use the orexin-1 (OX1 ) receptor antagonist SB-334867 to examine the role of prelimbic cortex and ventral tegmental area OX1 receptors in cue-induced reinstatement of ethanol-seeking. Ethanol-preferring rats (iP) rats were trained to self-administer ethanol (10 percent v/v, FR3) or sucrose (0.
View Article and Find Full Text PDFThe abuse of inhaled chemical vapors is a growing problem especially among adolescent populations. This is partly driven by the fact that inhaled products are cheap, accessible, and provide a rapid 'high'. In the brain inhalants have multiple effects.
View Article and Find Full Text PDFAbuse of toluene-containing inhalants is common during adolescence, with ongoing chronic misuse associated with adverse outcomes and increased risk for addictive behaviours in adulthood. However, the mechanisms mediating the adaptive processes related to these outcomes are not well defined. To model human abuse patterns we exposed male adolescent Wistar rats (postnatal day 27) to chronic intermittent inhaled toluene (CIT, 10,000 ppm) or air (control) for 1h/day, three times/week for 3 weeks.
View Article and Find Full Text PDFOrexins are hypothalamic neuropeptides which bind to two G-protein-coupled receptors, orexin-1 (OX(1)R) and orexin-2 (OX(2)R) receptor. While a role for OX(1)R has been established in both ethanol reinforcement and ethanol-seeking behaviour, the role of OX(2)R in these behaviours is relatively less-studied. The aim of this study was to determine the role of central OX(2)R in ethanol-taking and ethanol-seeking behaviour.
View Article and Find Full Text PDFOrexin (hypocretin) containing neurons reside in discrete regions of the lateral hypothalamus from where they innervate the entire neuroaxis. Via actions upon orexin receptors (OX1 and OX2), the orexin peptides (orexin A and orexin B) are thought to play a role in ethanol consumption and seeking. While a role for OX1 receptors in these behaviours is established, the case for OX2 receptors is less clear at present, although recent data certainly support an involvement of OX2 receptors in ethanol consumption.
View Article and Find Full Text PDFInhalant misuse is common during adolescence, with ongoing chronic misuse associated with neurobiological and cognitive abnormalities. While human imaging studies consistently report white matter abnormalities among long-term inhalant users, longitudinal studies have been lacking with limited data available regarding the progressive nature of such abnormalities, including the potential for recovery following periods of sustained abstinence. We exposed adolescent male Wistar rats (postnatal day 27) to chronic intermittent inhaled toluene (3,000 ppm) for 1 hour/day, 3 times/week for 8 weeks to model abuse patterns observed in adolescent and young adult human users.
View Article and Find Full Text PDFTissue-type plasminogen activator (tPA) is a major protease of the central nervous system. Most studies to date have used in situ- or gel-based zymographic assays to monitor in vivo changes in neural tPA activity. In this study, we demonstrate that the amidolytic assay can be adapted to accurately detect changes in net tPA activity in mouse brain tissues.
View Article and Find Full Text PDFRelapse prevention represents the primary therapeutic challenge in the treatment of drug addiction. As with humans, drug-seeking behaviour can be precipitated in laboratory animals by exposure to a small dose of the drug (prime). The aim of this study was to identify brain nuclei implicated in the cocaine-primed reinstatement of a conditioned place preference (CPP).
View Article and Find Full Text PDFThe adenosine A(2A) receptor is specifically enriched in the medium spiny neurons that make up the 'indirect' output pathway from the ventral striatum, a structure known to have a crucial, integrative role in processes such as reward, motivation, and drug-seeking behavior. In the present study we investigated the impact of adenosine A(2A) receptor deletion on behavioral responses to morphine in a number of reward-related paradigms. The acute, rewarding effects of morphine were evaluated using the conditioned place preference paradigm.
View Article and Find Full Text PDFBackground: To extend the known phenotype of strains commonly used in the development of mutant mice, ethanol, saccharin, and caffeine preferences were examined in C57Bl/6J, CD-1, and hybrid C57Bl/6J x CD-1 mice. As dopaminergic mechanisms are inherently involved in the neuronal processing of many drugs of abuse (including ethanol), and an important role for adenosine-dopamine interactions has also been reported, the dopaminergic and purinergic neurochemical profiles of mice were compared against the consummatory phenotype observed.
Methods: Ethanol (5% v/v), saccharin (0.
Here we report the development of D1A2A receptor knockout mice to investigate whether interactions between dopamine D1 and adenosine A2A receptors participate in reward-related behavior. The combined deletion of D1 and A2A receptors resulted in mice with decreased weight and appetitive processes, reduced rearing and exploratory behaviors, increased anxiety, and a significantly poorer performance on the rotarod, compared to wild-type littermates. D1A2A receptor knockout mice shared phenotypic similarities with mice deficient in D1 receptors, while also paralleling behavioral deficits seen in A2A receptor knockout mice, indicating individual components of the behavioral phenotype of the D1A2A receptor knockout attributable to the loss of both receptors.
View Article and Find Full Text PDF