The advent of brain reading techniques has enabled new approaches to the study of concept representation, based on the analysis of multivoxel activation patterns evoked by the contemplation of individual concepts such as animal concepts. The present fMRI study characterized the representation of 30 animal concepts. Dimensionality reduction of the multivoxel activation patterns underlying the individual animal concepts indicated that the semantic building blocks of the brain's representations of the animals corresponded to intrinsic animal properties (e.
View Article and Find Full Text PDFThis study provides a brain-based account of how object concepts at an intermediate (basic) level of specificity are represented, offering an enriched view of what it means for a concept to be a basic-level concept, a research topic pioneered by Rosch and others (Rosch et al., 1976). Applying machine learning techniques to fMRI data, it was possible to determine the semantic content encoded in the neural representations of object concepts at basic and subordinate levels of abstraction.
View Article and Find Full Text PDFHum Brain Mapp
August 2015
Although enormous progress has recently been made in identifying the neural representations of individual object concepts, relatively little is known about the growth of a neural knowledge representation as a novel object concept is being learned. In this fMRI study, the growth of the neural representations of eight individual extinct animal concepts was monitored as participants learned two features of each animal, namely its habitat (i.e.
View Article and Find Full Text PDF