Publications by authors named "Andrew J Waddie"

We present a normal incidence terahertz reflectivity technique to determine the optical thickness and birefringence of yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs). Initial verification of the method was achieved by measurement of a set of fused silica calibration samples with known thicknesses and showed excellent agreement (<1% of refractive index) with the literature. The THz-measured optical thickness and its variation through the depth profile of the YSZ coating are shown to be in good agreement (<4%) with scanning electron microscope cross-sectional thickness measurements.

View Article and Find Full Text PDF

Large-format single-photon avalanche diode (SPAD) arrays often suffer from low fill-factors-the ratio of the active area to the overall pixel area. The detection efficiency of these detector arrays can be vastly increased with the integration of microlens arrays designed to concentrate incident light onto the active areas and may be refractive or diffractive in nature. The ability of diffractive optical elements (DOEs) to efficiently cover a square or rectangular pixel, combined with their capability of working as fast lenses (i.

View Article and Find Full Text PDF

We present a novel method for the development of a micro lenslets hexagonal array. We use gradient index (GRIN) micro lenses where the variation of the refraction index is achieved with a structure of nanorods made of 2 types of glasses. To develop the GRIN micro lens array, we used a modified stack-and-draw technology which was originally applied for the fabrication of photonic crystal fibers.

View Article and Find Full Text PDF

A customized UV nanosecond pulsed laser system has been developed for the fast generation of tamper-proof security markings on the surface of metals, such as stainless steel, nickel, brass, and nickel-chromium (Inconel) alloys. The markings in the form of reflective phase holographic structures are generated using a laser microsculpting process that involves laser-induced local melting and vaporization of the metal surface. The holographic structures are formed from an array of optically-smooth craters whose depth can be controlled with ± 25nm accuracy.

View Article and Find Full Text PDF

We present a novel method for the development of diffractive optical elements (DOEs). Unlike standard surface relief DOEs, the phase shift is introduced through a refractive index variation achieved by using different types of glass. For the fabrication of DOEs we use a modified stack-and-draw technique, originally developed for the fabrication of photonic crystal fibers, resulting in a completely flat element that is easy to integrate with other optical components.

View Article and Find Full Text PDF

We demonstrate the feasibility of the development of a gradient-index elliptical microlens with a size of 75×125  μm using nanostructured glass technology. The gradient index is obtained by means of a discrete internal structure composed of two glasses with feature sizes much smaller than the wavelength of the incident light. A modified photonic crystal fiber-drawing technique is used for the lens fabrication.

View Article and Find Full Text PDF

Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process.

View Article and Find Full Text PDF

In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700-3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500-4800 nm.

View Article and Find Full Text PDF

Two dimensional interferometric trapping of multiple microspheres and Escherichia coli has been demonstrated using a multicore fiber lensed with an electric arc fusion splicer. Light was coupled evenly into all four cores using a diffractive optical element. The visibility of the fringes and also the appearance of the lattice can be altered by rotating a half wave-plate.

View Article and Find Full Text PDF

In this paper we report on the development and optical properties of nanostructured gradient index microlenses with good chromatic behavior. We introduce a new fabrication concept for the development of large diameter nanostructured gradient index microlenses based on quantized gradient index profiles and the use of nanostructured meta-rods. We show a dependence of the quality of performance on the number of refractive index levels and the lens diameter.

View Article and Find Full Text PDF

We present a new algorithm that enables the analysis of large two-dimensional optical gratings with very small feature sizes using the Fourier modal method (FMM). With the conventional algorithm such structures cannot be solved because of limitations in computer memory and calculation time. By dividing the grating into several smaller subgratings and solving them sequentially, both memory requirement and calculation time can be reduced dramatically.

View Article and Find Full Text PDF

We introduce a design method for diffractive cylindrical microlenses fabricated with a new technology similar to the fabrication of all-solid photonic crystal fibers. Unlike conventional microlenses that are fabricated with etching methods and thus have a step-index profile, the refractive index of each layer can be individually designed. We study the transmitted field of such nonperiodic lamellar phase grating.

View Article and Find Full Text PDF

We introduce a previously unreported laser cavity configuration, using a diffractive optical element (DOE) in place of the output coupler. Such a configuration allows the DOE to work both in reflection, as a mode shaping element, and in transmission as a beam shaper. Employing dual wavelength DOE optimization techniques and phase delays greater than 2pi, allows the two functions to be designed independently.

View Article and Find Full Text PDF

As design algorithms for diffractive optical elements improve, the limiting factor becomes the fabrication process. It is hoped a better understanding of fabrication errors will allow elements with greater tolerance to be designed. This is important for high-power laser fiber coupling, where hot spots lead to failure.

View Article and Find Full Text PDF

An optoelectronic neural network is presented that is designed to solve the assignment problem--or any similar optimization task given minimal adjustment--in both crossbar and banyan packet switches. We examine the design decisions made at the hardware, software, and algorithmic levels and indicate the associated effect on the system as a whole. Clearly detailed experimental results show the system's robustness and performance due to the particular optoelectronic-algorithm combination used.

View Article and Find Full Text PDF