Objectives: The amyotrophic lateral sclerosis (ALS) research community was one of the first to adopt methodology guidelines to improve preclinical research reproducibility. We here present the results of a systematic review to investigate how the standards in this field changed over the 10-year period during which the guidelines were first published (2007) and updated (2010).
Methods: We searched for papers reporting ALS research on SOD1 (superoxide dismutase 1) mice published between 2005 and 2015 on the ISI Web of Science database, resulting in a sample of 569 papers to review, after triage.
This review article focuses on the Contactin (CNTN) subset of the Immunoglobulin supergene family (IgC2/FNIII molecules), whose components share structural properties (the association of Immunoglobulin type C2 with Fibronectin type III domains), as well as a general role in cell contact formation and axonal growth control. IgC2/FNIII molecules include 6 highly related components (CNTN 1-6), associated with the cell membrane via a Glycosyl Phosphatidyl Inositol (GPI)-containing lipid tail. Contactin 1 and Contactin 2 share ~50 (49.
View Article and Find Full Text PDFThe study of receptor endocytosis is important to our understanding of the signal transduction events initiated by axon guidance cues in growth cones. Fab fragments of antibodies to guidance receptors and endocytic cargoes like transferrin and cholera toxin-B are the tools of choice for studying the dynamics of receptor internalization and intracellular trafficking by different pathways. We describe a method where in vitro cultures of growth cones are incubated with these ligands in the presence or absence of Sema3A, followed by stripping of remaining ligand on cell-surface and analysis by immunofluorescence techniques.
View Article and Find Full Text PDFCell fate commitment of spinal progenitor neurons is initiated by long-range, midline-derived, morphogens that regulate an array of transcription factors that, in turn, act sequentially or in parallel to control neuronal differentiation. Included among these are transcription factors that regulate the expression of receptors for guidance cues, thereby determining axonal trajectories. The Ig/FNIII superfamily molecules TAG1/Axonin1/CNTN2 (TAG1) and Neurofascin (Nfasc) are co-expressed in numerous neuronal cell types in the CNS and PNS - for example motor, DRG and interneurons - both promote neurite outgrowth and both are required for the architecture and function of nodes of Ranvier.
View Article and Find Full Text PDFEndocytic trafficking of membrane proteins is essential for neuronal structure and function. We show that Transient Axonal Glycoprotein 1 (TAG1 or CNTN2), a contactin-related adhesion molecule, plays a central role in the differential trafficking of components of the semaphorin3A (Sema3A) receptor complex into distinct endosomal compartments in murine spinal sensory neuron growth cones. The semaphorin3A receptor is composed of Neuropilin1 (NRP1), PlexinA4, and L1, with NRP1 being the ligand-binding component.
View Article and Find Full Text PDFThe expression of the cell recognition molecule F3/Contactin (CNTN1) is generally associated with the functions of post-mitotic neurons. In the embryonic cortex, however, we find it expressed by proliferating ventricular zone (VZ) precursors. In contrast to previous findings in the developing cerebellum, F3/Contactin transgenic overexpression in the early cortical VZ promotes proliferation and expands the precursor pool at the expense of neurogenesis.
View Article and Find Full Text PDFModulation of the sonic hedgehog (SHH) pathway is a crucial factor in cerebellar morphogenesis. Stimulation of granule neuron progenitor (GNP) proliferation is a central function of SHH signalling, but how this is controlled locally is not understood. We show that two sequentially expressed members of the contactin (CNTN) family of adhesion molecules, TAG1 and F3, act antagonistically to control SHH-induced proliferation: F3 suppresses SHH-induced GNP proliferation and induces differentiation, whereas TAG1 antagonises F3.
View Article and Find Full Text PDFWhen the axons of primary sensory neurons project into the embryonic mammalian spinal cord, they bifurcate and extend rostrocaudally before sending collaterals to specific laminae according to neuronal subclass. The specificity of this innervation has been suggested to be the result both of differential sensitivity to chemorepellants expressed in the ventral spinal cord and of the function of Ig-like neural cell adhesion molecules in the dorsal horn. The relationship between these mechanisms has not been addressed.
View Article and Find Full Text PDFIn myelinated axons, K+ channels are concealed under the myelin sheath in the juxtaparanodal region, where they are associated with Caspr2, a member of the neurexin superfamily. Deletion of Caspr2 in mice by gene targeting revealed that it is required to maintain K+ channels at this location. Furthermore, we show that the localization of Caspr2 and clustering of K+ channels at the juxtaparanodal region depends on the presence of TAG-1, an immunoglobulin-like cell adhesion molecule that binds Caspr2.
View Article and Find Full Text PDFIn this paper we describe the production and analysis of mice carrying a 110-kb transgene that encompasses the wild-type Foxn1 genomic locus. Mutations in Foxn1 cause the nude phenotype. We show that in the hair follicles, transgenic mice with increased Foxn1 gene dosage exhibited increased Foxn1 expression that was restricted correctly to the nascent, post-mitotic cells of the differentiating hair cortex and hair cuticle lineages.
View Article and Find Full Text PDF