Publications by authors named "Andrew J Tatem"

Article Synopsis
  • Timely detection of emerging infections is critical for managing outbreaks, and human mobility plays a key role in how diseases spread spatially.* -
  • This study presents a spatial sampling framework that uses human mobility data to improve the allocation of testing resources, integrating different sampling methods at the community level.* -
  • Results show that using mobility data can enhance testing efficiency by reducing the number of individuals needing screening while maintaining accurate infection detection, particularly important in densely populated cities.*
View Article and Find Full Text PDF

Previous research in India has identified urbanisation, human mobility and population demographics as key variables associated with higher district level COVID-19 incidence. However, the spatiotemporal dynamics of mobility patterns in rural and urban areas in India, in conjunction with other drivers of COVID-19 transmission, have not been fully investigated. We explored travel networks within India during two pandemic waves using aggregated and anonymized weekly human movement datasets obtained from Google, and quantified changes in mobility before and during the pandemic compared with the mean baseline mobility for the 8-week time period at the beginning of 2020.

View Article and Find Full Text PDF

The persistence of geographic inequities in vaccination coverage often evidences the presence of zero-dose and missed communities and their vulnerabilities to vaccine-preventable diseases. These inequities were exacerbated in many places during the coronavirus disease 2019 (COVID-19) pandemic, due to severe disruptions to vaccination services. Understanding changes in zero-dose prevalence and its associated risk factors in the context of the COVID-19 pandemic is, therefore, critical to designing effective strategies to reach vulnerable populations.

View Article and Find Full Text PDF
Article Synopsis
  • - The study emphasizes the importance of quickly detecting new infections for effective outbreak management and highlights how human mobility affects infection risks and spread, using spatial sampling to guide testing efforts in specific areas.
  • - Researchers combined mobility data with different spatial sampling methods to optimize testing strategies for emerging infections, testing their effectiveness through analysis of real and simulated outbreak scenarios.
  • - Results show that using case flow and transmission intensity data can significantly reduce the number of tests needed while maintaining accuracy, making this approach a cost-effective way to enhance community-level infection detection.
View Article and Find Full Text PDF

Among other focus areas, the global Sustainable Development Goals (SDGs) 3 and 11 seek to advance progress toward universal coverage of maternal, neonatal, and child health (MNCH) services and access to safe and affordable housing and basic services by 2030. Governments and development agencies have historically neglected the health and well-being associated with living in urban slums across major capital cities in sub-Saharan Africa since health policies and programs have tended to focus on people living in rural communities. This study assessed the trends and compared inequities in MNCH service utilization between slum and non-slum districts in the Greater Accra region of Ghana.

View Article and Find Full Text PDF

Background: The Hubei Province in China reported its last indigenous malaria case in September 2012, but imported malaria cases, particularly those related to Plasmodium vivax and Plasmodium falciparum, threaten Hubei's malaria-free status. This study investigated the epidemiological changes in P. vivax and P.

View Article and Find Full Text PDF

A large number of historical simulations and future climate projections are available from Global Climate Models, but these are typically of coarse resolution, which limits their effectiveness for assessing local scale changes in climate and attendant impacts. Here, we use a novel statistical downscaling model capable of replicating extreme events, the Bias Correction Constructed Analogues with Quantile mapping reordering (BCCAQ), to downscale daily precipitation, air-temperature, maximum and minimum temperature, wind speed, air pressure, and relative humidity from 18 GCMs from the Coupled Model Intercomparison Project Phase 6 (CMIP6). BCCAQ is calibrated using high-resolution reference datasets and showed a good performance in removing bias from GCMs and reproducing extreme events.

View Article and Find Full Text PDF

Targeted public health interventions for an emerging epidemic are essential for preventing pandemics. During 2020-2022, China invested significant efforts in strict zero-COVID measures to contain outbreaks of varying scales caused by different SARS-CoV-2 variants. Based on a multi-year empirical dataset containing 131 outbreaks observed in China from April 2020 to May 2022 and simulated scenarios, we ranked the relative intervention effectiveness by their reduction in instantaneous reproduction number.

View Article and Find Full Text PDF

"Leaving no one behind" is the fundamental objective of the 2030 Agenda for Sustainable Development. Latin America and the Caribbean is marked by social inequalities, whilst its total population is projected to increase to almost 760 million by 2050. In this context, contemporary and spatially detailed datasets that accurately capture the distribution of residential population are critical to appropriately inform and support environmental, health, and developmental applications at subnational levels.

View Article and Find Full Text PDF

Effective government services rely on accurate population numbers to allocate resources. In Colombia and globally, census enumeration is challenging in remote regions and where armed conflict is occurring. During census preparations, the Colombian National Administrative Department of Statistics conducted social cartography workshops, where community representatives estimated numbers of dwellings and people throughout their regions.

View Article and Find Full Text PDF

While there has been great success in increasing the coverage of new childhood vaccines globally, expanding routine immunization to reliably reach all children and communities has proven more challenging in many low- and middle-income countries. Achieving this requires vaccination strategies and interventions that identify and target those unvaccinated, guided by the most current and detailed data regarding their size and spatial distribution. Through the integration and harmonisation of a range of geospatial data sets, including population, vaccination coverage, travel-time, settlement type, and conflict locations.

View Article and Find Full Text PDF

Achieving equity in vaccination coverage has been a critical priority within the global health community. Despite increased efforts recently, certain populations still have a high proportion of un- and under-vaccinated children in many low- and middle-income countries (LMICs). These populations are often assumed to reside in remote-rural areas, urban slums and conflict-affected areas.

View Article and Find Full Text PDF

Understanding the fine scale and subnational spatial distribution of reproductive, maternal, newborn, child, and adolescent health and development indicators is crucial for targeting and increasing the efficiency of resources for public health and development planning. National governments are committed to improve the lives of their people, lift the population out of poverty and to achieve the Sustainable Development Goals. We created an open access collection of high resolution gridded and district level health and development datasets of India using mainly the 2015-16 National Family Health Survey (NFHS-4) data, and provide estimates at higher granularity than what is available in NFHS-4, to support policies with spatially detailed data.

View Article and Find Full Text PDF

Low levels of agricultural productivity are associated with the persistence of food insecurity, poverty, and other socio-economic stresses. Mapping and monitoring agricultural dynamics and production in real-time at high spatial resolution are essential for ensuring food security and shaping policy interventions. However, an accurate yield estimation might be challenging in some arid and semi-arid regions since input datasets are generally scarce, and access is restricted due to security challenges.

View Article and Find Full Text PDF

Objectives: To investigate how the quality of maternal health services and travel times to health facilities affect birthing service utilisation in Eastern Region, Ghana.

Design: The study is a cross-sectional spatial interaction analysis of birth service utilisation patterns. Routine birth data were spatially linked to quality care, service demand and travel time data.

View Article and Find Full Text PDF

Geographically precise identification and targeting of populations at risk of vaccine-preventable diseases has gained renewed attention within the global health community over the last few years. District level estimates of vaccination coverage and corresponding zero-dose prevalence constitute a potentially useful evidence base to evaluate the performance of vaccination strategies. These estimates are also valuable for identifying missed communities, hence enabling targeted interventions and better resource allocation.

View Article and Find Full Text PDF

Social distancing has been widely-implemented as a public health measure during the COVID-19 pandemic. Despite widespread application of social distancing guidance, the feasibility of people adhering to such guidance varies in different settings, influenced by population density, the built environment and a range of socio-economic factors. Social distancing constraints however have only been identified and mapped for limited areas.

View Article and Find Full Text PDF

Background: The composite coverage index (CCI) provides an integrated perspective towards universal health coverage in the context of reproductive, maternal, newborn and child health. Given the sample design of most household surveys does not provide coverage estimates below the first administrative level, approaches for achieving more granular estimates are needed. We used a model-based geostatistical approach to estimate the CCI at multiple resolutions in Peru.

View Article and Find Full Text PDF

Many vaccines are often administered in multiple doses to boost their effectiveness. In the case of childhood vaccines, the coverage maps of the doses and the differences between these often constitute an evidence base to guide investments in improving access to vaccination services and health system performance in low and middle-income countries. A major problem often encountered when mapping the coverage of multi-dose vaccines is the need to ensure that the coverage maps decrease monotonically with successive doses.

View Article and Find Full Text PDF

Background: Access to healthcare is imperative to health equity and well-being. Geographic access to healthcare can be modeled using spatial datasets on local context, together with the distribution of existing health facilities and populations. Several population datasets are currently available, but their impact on accessibility analyses is unknown.

View Article and Find Full Text PDF

With the onset of the coronavirus disease 2019 (COVID-19) pandemic, public health measures such as physical distancing were recommended to reduce transmission of the virus causing the disease. However, the same approach in all areas, regardless of context, may lead to measures being of limited effectiveness and having unforeseen negative consequences, such as loss of livelihoods and food insecurity. A prerequisite to planning and implementing effective, context-appropriate measures to slow community transmission is an understanding of any constraints, such as the locations where physical distancing would not be possible.

View Article and Find Full Text PDF

Background: Geographic barriers to healthcare are associated with adverse maternal health outcomes. Modelling travel times using georeferenced data is becoming common in quantifying physical access. Multiple Demographic and Health Surveys ask women about distance-related problems accessing healthcare, but responses have not been evaluated against modelled travel times.

View Article and Find Full Text PDF

Disaggregated population counts are needed to calculate health, economic, and development indicators in Low- and Middle-Income Countries (LMICs), especially in settings of rapid urbanisation. Censuses are often outdated and inaccurate in LMIC settings, and rarely disaggregated at fine geographic scale. Modelled gridded population datasets derived from census data have become widely used by development researchers and practitioners; however, accuracy in these datasets are evaluated at the spatial scale of model input data which is generally courser than the neighbourhood or cell-level scale of many applications.

View Article and Find Full Text PDF

Background: Health service areas are essential for planning, policy and managing public health interventions. In this study, we delineate health service areas from routinely collected health data as a robust geographic basis for presenting access to maternal care indicators.

Methods: A zone design algorithm was adapted to delineate health service areas through a cross-sectional, ecological study design.

View Article and Find Full Text PDF