Ischemic stroke induces rapid loss in bone mineral density that is up to 13 times greater than during normal aging, leading to a markedly increased risk of fracture. Little is known about skeletal changes following stroke beyond density loss. In this study, we use a mild-moderate middle cerebral artery occlusion model to determine the effects of ischemic stroke without bedrest on bone microstructure, dynamic bone formation, and tissue composition.
View Article and Find Full Text PDFBackground: Cartilage tissue engineering is a growing field due to the lack of regenerative capacity of native tissue. The use of bioreactors for cartilage tissue engineering is common, but the results are controversial. Some studies suggest that microgravity bioreactors are ideal for chondrogenesis, while others show that mimicking hydrostatic pressure is crucial for cartilage formation.
View Article and Find Full Text PDFDevelopment and maintenance of a vascular network are critical for bone growth and homeostasis; strategies that promote vascular function are critical for clinical success of tissue-engineered bone constructs. Co-culture of endothelial cells (ECs) with mesenchymal stem cells (MSCs) and exposure to 10% cyclic tensile strain have both been shown to regulate osteogenesis in isolation, but potential synergistic effects have yet to be explored. The objective of this study was to expose an MSC-EC co-culture to 10% cyclic tensile strain to examine the role of this mechanical stimulus on MSC-EC behavior.
View Article and Find Full Text PDFAlthough hydrostatic pressure (HP) is known to regulate chondrogenic differentiation of mesenchymal stromal/stem cells (MSCs), improved insight into the mechanotransduction of HP may form the basis for novel tissue engineering strategies. Previously, we demonstrated that matrix stiffness and calcium ion (Ca(++)) mobility regulate the mechanotransduction of HP; however, the mechanisms, by which these Ca(++) signaling pathways are initiated, are currently unknown. The purinergic pathway, in which adenosine triphosphate (ATP) is released and activates P-receptors to initiate Ca(++) signaling, plays a key role in the mechanotransduction of compression, but has yet to be investigated with regard to HP.
View Article and Find Full Text PDFBiophysical cues play a key role in directing the lineage commitment of mesenchymal stem cells or multipotent stromal cells (MSCs), but the mechanotransductive mechanisms at play are still not fully understood. This review article first describes the roles of both substrate mechanics (e.g.
View Article and Find Full Text PDFThe objective of this study was to explore how the response of mesenchymal stem cells (MSCs) to dynamic compression (DC) depends on their pericellular environment and the development of their cytoskeleton. MSCs were first seeded into 3% agarose hydrogels, stimulated with the chondrogenic growth factor TGF-β3 and exposed to DC (~10% strain at 1Hz) for 1h on either day 7, 14, or 21 of culture. At each time point, the actin, vimentin and tubulin networks of the MSCs were assessed using confocal microscopy.
View Article and Find Full Text PDFThe aim of this study was to explore how cell-matrix interactions and extrinsic mechanical signals interact to determine stem cell fate in response to transforming growth factor-β3 (TGF-β3). Bone marrow derived mesenchymal stem cells (MSCs) were seeded in agarose and fibrin hydrogels and subjected to dynamic compression in the presence of different concentrations of TGF-β3. Markers of chondrogenic, myogenic and endochondral differentiation were assessed.
View Article and Find Full Text PDF