Publications by authors named "Andrew J Slot"

Subfamily C of the human ABC (ATP-binding cassette) superfamily contains nine proteins that are often referred to as the MRPs (multidrug-resistance proteins). The 'short' MRP/ABCC transporters (MRP4, MRP5, MRP8 and ABCC12) have a typical ABC structure with four domains comprising two membrane-spanning domains (MSD1 and MSD2) each followed by a nucleotide-binding domain (NBD1 and NBD2). The 'long' MRP/ABCCs (MRP1, MRP2, MRP3, ABCC6 and MRP7) have five domains with the extra domain, MSD0, at the N-terminus.

View Article and Find Full Text PDF

Members of the multidrug resistance protein (MRP/ABCC) subfamily of ATP-binding cassette proteins transport a wide array of anionic compounds, including sulfate, glucuronide, and glutathione (GSH) conjugates. The present study tested the ATP-dependent vesicular transport of leukotriene C(4) and 17beta-estradiol 17-(beta-d-glucuronide) (E(2)17betaG) mediated by the MRP1 and MRP2 transporters in the presence of six potential modulators from three different classes of GSH-conjugated catechol metabolites: the ecstasy metabolite 5-(glutathion-S-yl)-N-methyl-alpha-methyldopamine (5-GS-N-Me-alpha-MeDA), the caffeic acid metabolite 2-(glutathion-S-yl)-caffeic acid (2-GS-CA), and four GSH conjugates of 2-hydroxy (OH) and 4-OH estrogens (GS estrogens). MRP1-mediated E(2)17betaG transport was inhibited in a competitive manner with a relative order of potency of GS estrogens (IC(50) <1 microM) > 2-GS-CA (IC(50) 3 microM) > 5-GS-N-Me-alpha-MeDA (IC(50) 31 microM).

View Article and Find Full Text PDF

The ATP-binding cassette multidrug resistance protein 1 MRP1 (ABCC1) mediates the cellular efflux of organic anions including conjugated metabolites, chemotherapeutic agents, and toxicants. We previously described a mutation in cytoplasmic loop 7 (CL7) of MRP1, Pro1150Ala, which reduced leukotriene C(4) (LTC(4)) transport but increased 17beta-estradiol 17beta-d-glucuronide (E(2)17betaG) and methotrexate (MTX) transport. Vanadate-induced trapping of [alpha-(32)P]8N(3)ADP by the Pro1150Ala mutant in the absence of substrate was also greatly reduced compared with wild-type MRP1 suggesting an uncoupling of ATP hydrolysis and transport activity.

View Article and Find Full Text PDF

The ability of dopamine to induce apoptosis in a variety of cell types, including PC12 cells and neurons, has been well documented. Under non-reducing conditions, dopamine can be oxidized to semi-quinone and quinone species, which have the ability to arylate proteins and lead to the formation of covalent adducts. Potentially, it is the arylation of substrates critical to cell survival and/or the formation of toxic adducts which leads to the death observed after dopamine treatment.

View Article and Find Full Text PDF