The carbon-fixing activity of enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is regulated by Rubisco activase (Rca), a ring-forming ATPase that catalyzes inhibitor release. For higher plant Rca, the catalytic roles played by different oligomeric species have remained obscure. Here, we utilized fluorescence-correlation spectroscopy to estimate dissociation constants for the dimer-tetramer, tetramer-hexamer, hexamer-12-mer, and higher-order assembly equilibria of tobacco Rca.
View Article and Find Full Text PDFOligomerization plays an important role in the function of many proteins, but a quantitative picture of the oligomer distribution has been difficult to obtain using existing techniques. Here we describe a method that combines sub-stoichiometric labeling and recently developed single-molecule diffusometry to measure the size distribution of oligomers under equilibrium conditions in solution, one molecule at a time. We use this technique to characterize the oligomerization behavior of Nicotiana tabacum (Nt) Rubisco activase (Nt-Rca), a chaperone-like AAA-plus ATPase essential in regulating carbon fixation during photosynthesis.
View Article and Find Full Text PDFWe report a fluorescence correlation spectroscopy (FCS) study of the assembly pathway of the AAA+ protein ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca), a ring-forming ATPase responsible for activation of inhibited Rubisco complexes for biological carbon fixation. A thermodynamic characterization of simultaneously populated oligomeric states appears critical in understanding Rca structure and function. Using cotton β-Rca, we demonstrate that apparent diffusion coefficients vary as a function of concentration, nucleotide, and cation.
View Article and Find Full Text PDF