How appetite is modulated by physiological, contextual, or pharmacological influence is still unclear. Specifically, the discovery of appetite modulators is compromised by the abundance of side effects that usually limit in vivo drug action. We set out to identify neuroactive drugs that trigger only their intended single behavioral change, which would provide great therapeutic advantages.
View Article and Find Full Text PDFHigh-throughput, whole-organism phenotypic drug screening is made possible using live zebrafish larvae. Many human drugs have now been shown to affect zebrafish larvae in similar ways, through homologous molecular mechanisms. At this stage in life, zebrafish are small enough to fit in multi-well, microliter plates, yet developed enough to exhibit complex phenotypes, such as hunting behaviors and avoidance of predators.
View Article and Find Full Text PDFRecent discoveries provide a new hope that relapses of several types of cancer can be prevented by inducing ferroptosis.
View Article and Find Full Text PDFPhenotypic small molecule screens in zebrafish have gained popularity as an unbiased approach to probe biological processes. In this chapter we outline basic methods for performing chemical screens with larval zebrafish including breeding large numbers of embryos, plating larval fish into multi-well dishes, and adding small molecules to these wells. We also highlight important considerations when designing and interpreting the results of a phenotypic screen and possible follow-up approaches, including popular methods used to identify the mechanism of action of a chemical compound.
View Article and Find Full Text PDFHumans and many animals show 'freezing' behavior in response to threatening stimuli. In humans, inappropriate threat responses are fundamental characteristics of several mental illnesses. To identify small molecules that modulate threat responses, we developed a high-throughput behavioral assay in zebrafish (Danio rerio) and evaluated 10,000 compounds for their effects on freezing behavior.
View Article and Find Full Text PDFMany psychiatric drugs act on multiple targets and therefore require screening assays that encompass a wide target space. With sufficiently rich phenotyping and a large sampling of compounds, it should be possible to identify compounds with desired mechanisms of action on the basis of behavioral profiles alone. Although zebrafish (Danio rerio) behavior has been used to rapidly identify neuroactive compounds, it is not clear what types of behavioral assays would be necessary to identify multitarget compounds such as antipsychotics.
View Article and Find Full Text PDFIt has been suggested that the evolution of vertebrate opioid receptors (ORs) follow a vector of increased functionality. Here, we test this idea by comparing human and frog ORs. Interestingly, some of the most potent opioid peptides known have been isolated from amphibian skin secretions.
View Article and Find Full Text PDFIn 2000, the first chemical screen using living zebrafish in a multi-well plate was reported. Since then, more than 60 additional screens have been published describing whole-organism drug and pathway discovery projects in zebrafish. To investigate the scope of the work reported in the last 14 years and to identify trends in the field, we analyzed the discovery strategies of 64 primary research articles from the literature.
View Article and Find Full Text PDFDrug Discov Today Dis Models
January 2013
Small molecules screens conducted with living zebrafish have become a commonly practiced technique for small molecule discovery. Embryonic and larval zebrafish exhibit an almost limitless range of phenotypes, from the cellular to the organismal. Consequently, small molecule screens can be designed to discover compounds modifying any of these phenotypes.
View Article and Find Full Text PDFFor decades, studying the behavioral effects of individual drugs and genetic mutations has been at the heart of efforts to understand and treat nervous system disorders. High-throughput technologies adapted from other disciplines (e.g.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus (SARS-CoV) poses a considerable threat to human health. Activation of the viral spike (S)-protein by host cell proteases is essential for viral infectivity. However, the cleavage sites in SARS-S and the protease(s) activating SARS-S are incompletely defined.
View Article and Find Full Text PDFThe genetic elements of herpesvirus origins of lytic replication have been characterized in detail; however, much remains to be elucidated concerning their functional role in replication initiation. In the case of the Epstein-Barr virus (EBV), we have found that in addition to the two well-defined critical elements required for lytic replication (the upstream and downstream essential elements, UEE and DEE), the origin of lytic replication (OriLyt) also requires the presence of a GC-rich RNA in cis. The BHLF1 transcript is similar to the essential K5 transcript identified at the Kaposi's sarcoma-associated herpesvirus OriLyt.
View Article and Find Full Text PDFThe Epstein-Barr virus immediate-early protein (Zta) plays an essential role in viral lytic activation and pathogenesis. Zta is a basic zipper (b-Zip) domain-containing protein that binds multiple sites in the viral origin of lytic replication (OriLyt) and is required for lytic-cycle DNA replication. We present evidence that Zta binds to a sequence-specific, imperfect DNA hairpin formed by an inverted repeat within the upstream essential element (UEE) of OriLyt.
View Article and Find Full Text PDFHerpesviruses are a complex family of dsDNA viruses that are a major cause of human disease. All family members share highly related viral replication proteins, such as DNA polymerase, ssDNA-binding proteins and processivity factors. Consequently, it is generally thought that lytic replication occurs through a common and conserved mechanism.
View Article and Find Full Text PDFCellular topoisomerases and helicases are thought to play an essential role in herpesvirus replication and gene expression and are considered to be potential targets for antiviral therapies. Topoisomerase I (Topo I) and Topo II inhibitors can selectively inhibit Epstein-Barr virus (EBV) lytic cycle DNA replication. We found that the Topo I inhibitor camptothecin and, to a lesser extent, the Topo II inhibitor etoposide are potent inhibitors of the transcription and replication function of the EBV-encoded immediate-early protein Zta (also referred to as ZEBRA, EB1, and BZLF1).
View Article and Find Full Text PDFDisruption of cellular metabolic processes and usurpation of host proteins are hallmarks of herpesvirus lytic infection. Epstein-Barr virus (EBV) lytic replication is initiated by the immediate-early protein Zta. Zta is a multifunctional DNA binding protein that stimulates viral gene transcription, nucleates a replication complex at the viral origin of lytic replication, and inhibits cell cycle proliferation.
View Article and Find Full Text PDFEpstein-Barr virus (EBV) escapes host immunity by the reversible and epigenetic silencing of immunogenic viral genes. We previously presented evidence that a dynamic chromatin domain, which we have referred to as the latency control region (LCR), contributes to the reversible repression of EBNA2 and LMP1 gene transcription. We now explore the protein-DNA interaction profiles for a few known regulatory factors and histone modifications that regulate LCR structure and activity.
View Article and Find Full Text PDFWe have recently demonstrated that the severe acute respiratory syndrome coronavirus (SARS-CoV) receptor angiotensin converting enzyme 2 (ACE2) also mediates cellular entry of the newly discovered human coronavirus (hCoV) NL63. Here, we show that expression of DC-SIGN augments NL63 spike (S)-protein-driven infection of susceptible cells, while only expression of ACE2 but not DC-SIGN is sufficient for entry into nonpermissive cells, indicating that ACE2 fulfills the criteria of a bona fide hCoV-NL63 receptor. As for SARS-CoV, murine ACE2 is used less efficiently by NL63-S for entry than human ACE2.
View Article and Find Full Text PDFSevere acute respiratory syndrome (SARS) is caused by an emergent coronavirus (SARS-CoV), for which there is currently no effective treatment. SARS-CoV mediates receptor binding and entry by its spike (S) glycoprotein, and infection is sensitive to lysosomotropic agents that perturb endosomal pH. We demonstrate here that the lysosomotropic-agent-mediated block to SARS-CoV infection is overcome by protease treatment of target-cell-associated virus.
View Article and Find Full Text PDFThe lectins DC-SIGN and DC-SIGNR can augment viral infection; however, the range of pathogens interacting with these attachment factors is incompletely defined. Here we show that DC-SIGN and DC-SIGNR enhance infection mediated by the glycoprotein (GP) of Marburg virus (MARV) and the S protein of severe acute respiratory syndrome coronavirus and might promote viral dissemination. SIGNR1, a murine DC-SIGN homologue, also enhanced infection driven by MARV and Ebola virus GP and could be targeted to assess the role of attachment factors in filovirus infection in vivo.
View Article and Find Full Text PDFSevere acute respiratory syndrome-associated coronavirus (SARS-CoV) is a rapidly emerging pathogen with potentially serious consequences for public health. Here we describe conditions that result not only in the efficient expression of the SARS-CoV spike (S) protein on the surface of cells, but in its incorporation into lentiviral particles that can be used to transduce cells in an S glycoprotein-dependent manner. We found that although some primate cell lines, including Vero E6, 293T and Huh-7 cells, could be efficiently transduced by SARS-CoV S glycoprotein pseudoviruses, other cells lines were either resistant or very poorly permissive to virus entry.
View Article and Find Full Text PDFCD8 T cells play an important role in controlling Ebola infection and in mediating vaccine-induced protective immunity, yet little is known about antigenic targets in Ebola that are recognized by CD8 T cells. Overlapping peptides were used to identify major histocompatibility complex class I-restricted epitopes in mice immunized with vectors encoding Ebola nucleoprotein (NP). CD8 T-cell responses were mapped to a H-2(d)-restricted epitope (NP279-288) and two H-2(b)-restricted epitopes (NP44-52 and NP288-296).
View Article and Find Full Text PDF