Publications by authors named "Andrew J Olive"

Circulating monocytes infiltrate and coordinate immune responses in tissues surrounding implanted biomaterials and in other inflamed tissues. Here we show that immunometabolic cues in the biomaterial microenvironment govern the trafficking of immune cells, including neutrophils and monocytes, in a manner dependent on the chemokine receptor 2 (CCR2) and the C-X3-C motif chemokine receptor 1 (CX3CR1). This affects the composition and activation states of macrophage and dendritic cell populations, ultimately orchestrating the relative composition of pro-inflammatory, transitory and anti-inflammatory CCR2, CX3CR1 and CCR2 CX3CR1 immune cell populations.

View Article and Find Full Text PDF

Alveolar macrophages (AMs) are key mediators of lung function and are potential targets for therapies during respiratory infections. TGFβ is an important regulator of AM differentiation and maintenance, but how TGFβ directly modulates the innate immune responses of AMs remains unclear. This shortcoming prevents effective targeting of AMs to improve lung function in health and disease.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) infects several lung macrophage populations, which have distinct abilities to restrict Mtb. What enables Mtb survival in certain macrophage populations is not well understood. Here we used transposon sequencing analysis of Mtb in wild-type and autophagy-deficient mouse macrophages lacking ATG5 or ATG7, and found that Mtb genes involved in phthiocerol dimycocerosate (PDIM) virulence lipid synthesis confer resistance to autophagy.

View Article and Find Full Text PDF

The DNA dependent protein kinase (DNA-PK) initiates non-homologous recombination (NHEJ), the predominate DNA double-strand break (DSBR) pathway in higher vertebrates. It has been known for decades that the enzymatic activity of DNA-PK [that requires its three component polypeptides, Ku70, Ku80 (that comprise the DNA-end binding Ku heterodimer), and the catalytic subunit (DNA-PKcs)] is present in humans at 10-50 times the level observed in other mammals. Here, we show that the high level of DNA-PKcs protein expression appears evolutionarily in mammals between prosimians and higher primates.

View Article and Find Full Text PDF

MR1-restricted T cells have been implicated in microbial infections, sterile inflammation, wound healing and cancer. Similar to other antigen presentation molecules, evidence supports multiple, complementary MR1 antigen presentation pathways. To investigate ligand exchange pathways for MR1, we used MR1 monomers and tetramers loaded with 5-(2-oxopropylideneamino)-6-d-ribitylaminouracil (5-OP-RU) to deliver the antigen.

View Article and Find Full Text PDF

Macrophages play a crucial role in eliminating respiratory pathogens. Both pulmonary resident alveolar macrophages (AMs) and recruited macrophages contribute to detecting, responding to, and resolving infections in the lungs. Despite their distinct functions, it remains unclear how these macrophage subsets regulate their responses to infection, including how activation by the cytokine IFN-γ is regulated.

View Article and Find Full Text PDF

Introduction: Phagocytosis of inhaled crystalline silica (cSiO) particles by tissue-resident alveolar macrophages (AMs) initiates generation of proinflammatory eicosanoids derived from the ω-6 polyunsaturated fatty acid (PUFA) arachidonic acid (ARA) that contribute to chronic inflammatory disease in the lung. While supplementation with the ω-3 PUFA docosahexaenoic acid (DHA) may influence injurious cSiO-triggered oxylipin responses, investigation of this hypothesis in physiologically relevant AMs is challenging due to their short-lived nature and low recovery numbers from mouse lungs. To overcome these challenges, we employed fetal liver-derived alveolar-like macrophages (FLAMs), a self-renewing surrogate that is phenotypically representative of primary lung AMs, to discern how DHA influences cSiO-induced eicosanoids.

View Article and Find Full Text PDF

Mycobacteria can colonize environments where the availability of metal ions is limited. Biological or inorganic chelators play an important role in limiting metal availability, and we developed a model to examine survival in the presence of the chelator sodium citrate. We observed that instead of restricting growth, concentrated sodium citrate killed .

View Article and Find Full Text PDF

Macrophages play a crucial role in eliminating respiratory pathogens. Both pulmonary resident alveolar macrophages (AMs) and recruited macrophages contribute to detecting, responding to, and resolving infections in the lungs. Despite their distinct functions, it remains unclear how these macrophage subsets regulate their responses to infection, including how activation by the cytokine IFNγ is regulated.

View Article and Find Full Text PDF

Immune networks that control antimicrobial and inflammatory mechanisms have overlapping regulation and functions to ensure effective host responses. Genetic interaction studies of immune pathways that compare host responses in single and combined knockout backgrounds are a useful tool to identify new mechanisms of immune control during infection. For disease caused by pulmonary Mycobacterium tuberculosis (Mtb) infections, which currently lacks an effective vaccine, understanding the genetic interactions between protective immune pathways may identify new therapeutic targets or disease-associated genes.

View Article and Find Full Text PDF

Listeria monocytogenes (Lm) is an intracellular foodborne pathogen which causes the severe disease listeriosis in immunocompromised individuals. Macrophages play a dual role during Lm infection by both promoting dissemination of Lm from the gastrointestinal tract and limiting bacterial growth upon immune activation. Despite the relevance of macrophages to Lm infection, the mechanisms underlying phagocytosis of Lm by macrophages are not well understood.

View Article and Find Full Text PDF

Immune networks that control antimicrobial and inflammatory mechanisms have overlapping regulation and functions to ensure effective host responses. Genetic interaction studies of immune pathways that compare host responses in single and combined knockout backgrounds are a useful tool to identify new mechanisms of immune control during infection. For disease caused by pulmonary infections, which currently lacks an effective vaccine, understanding genetic interactions between protective immune pathways may identify new therapeutic targets or disease-associated genes.

View Article and Find Full Text PDF

The interactions between a host cell and a pathogen can dictate disease outcomes and are important targets for host-directed therapies. Mycobacterium abscessus (Mab) is a highly antibiotic resistant, rapidly growing nontuberculous mycobacterium that infects patients with chronic lung diseases. Mab can infect host immune cells, such as macrophages, which contribute to its pathogenesis.

View Article and Find Full Text PDF

Cell-intrinsic immune mechanisms control intracellular pathogens that infect eukaryotes. The intracellular pathogen () evolved to withstand cell-autonomous immunity to cause persistent infections and disease. A potent inducer of cell-autonomous immunity is the lymphocyte-derived cytokine IFNγ.

View Article and Find Full Text PDF

Mycobacterium tuberculosis () is a bacterium that exclusively resides in human hosts and remains a dominant cause of morbidity and mortality among infectious diseases worldwide. Host protection against infection is dependent on the function of immunity-related GTPase clade M (IRGM) proteins. Polymorphisms in human associate with altered susceptibility to mycobacterial disease, and human IRGM promotes the delivery of into degradative autolysosomes.

View Article and Find Full Text PDF

The human pathogen Chlamydia trachomatis evades killing by IFNγ-activated mechanisms, yet how this occurs remains unclear. In this issue of Cell Host & Microbe, Walsh et al. identify an IFNγ-dependent antimicrobial mechanism mediated by the host ubiquitin ligase RNF213 that is evaded by the Chlamydia effector GarD.

View Article and Find Full Text PDF

Alveolar macrophages (AMs) are tissue-resident cells in the lungs derived from the fetal liver that maintain lung homeostasis and respond to inhaled stimuli. Although the importance of AMs is undisputed, they remain refractory to standard experimental approaches and high-throughput functional genetics, as they are challenging to isolate and rapidly lose AM properties in standard culture. This limitation hinders our understanding of key regulatory mechanisms that control AM maintenance and function.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used a genetically diverse group of mice, known as the Collaborative Cross (CC), along with a library of bacterial mutants, to explore the relationship between bacterial genetics and host immunity.
  • * Findings indicated that different mouse strains showed significant differences in their susceptibility to infection and immune responses, highlighting specific host-pathogen interactions that affect disease outcomes.
View Article and Find Full Text PDF

Cytokine-mediated activation of host immunity is central to the control of pathogens. Interferon-gamma (IFNγ) is a key cytokine in protective immunity that induces major histocompatibility complex class II molecules (MHCII) to amplify CD4 T cell activation and effector function. Despite its central role, the dynamic regulation of IFNγ-induced MHCII is not well understood.

View Article and Find Full Text PDF

The immunological synapse allows antigen-presenting cells (APCs) to convey a wide array of functionally distinct signals to T cells, which ultimately shape the immune response. The relative effect of stimulatory and inhibitory signals is influenced by the activation state of the APC, which is determined by an interplay between signal transduction and metabolic pathways. While pathways downstream of toll-like receptors rely on glycolytic metabolism for the proper expression of inflammatory mediators, little is known about the metabolic dependencies of other critical signals such as interferon gamma (IFNγ).

View Article and Find Full Text PDF

In order to sustain a persistent infection, Mycobacterium tuberculosis (Mtb) must adapt to a changing environment that is shaped by the developing immune response. This necessity to adapt is evident in the flexibility of many aspects of Mtb metabolism, including a respiratory chain that consists of two distinct terminal cytochrome oxidase complexes. Under the conditions tested thus far, the bc1/aa3 complex appears to play a dominant role, while the alternative bd oxidase is largely redundant.

View Article and Find Full Text PDF

Mycobacterium tuberculosis colonizes, survives, and grows inside macrophages. In vitro macrophage infection models, using both primary macrophages and cell lines, enable the characterization of the pathogen response to macrophage immune pressure and intracellular environmental cues. We describe methods to propagate and infect primary murine bone marrow-derived macrophages, HoxB8 conditionally immortalized myeloid cells, Max Planck Institute alveolar macrophage-like cells, and J774 and THP-1 macrophage-like cell lines.

View Article and Find Full Text PDF

Andrew J. Olive works in the field of host responses to chronic infections. In this mSphere of Influence article, he reflects on how "Tryptophan biosynthesis protects mycobacteria from CD4 T-cell-mediated killing" (Y.

View Article and Find Full Text PDF

Chronic bacterial infections are caused by pathogens that persist within their hosts and avoid clearance by the immune system. Treatment and/or detection of such pathogens is difficult, and the resulting pathologies are often deleterious or fatal. There is an urgent need to develop protective vaccines and host-directed therapies that synergize with antibiotics to prevent pathogen persistence and infection-associated pathologies.

View Article and Find Full Text PDF

An inducible program of inflammatory gene expression is a hallmark of antimicrobial defenses. Recently, cellular nucleic acid-binding protein (CNBP) was identified as a regulator of nuclear factor-kappaB (NF-κB)-dependent proinflammatory cytokine gene expression. Here, we generated mice lacking CNBP and found that CNBP regulates a very restricted gene signature that includes IL-12β.

View Article and Find Full Text PDF