Publications by authors named "Andrew J Morris"

Ceramides are important intermediates in sphingolipid metabolism and serve as signaling molecules with independent biological significance. Elevated cellular and circulating ceramide levels are consistently associated with pathological conditions including cardiometabolic diseases, neurological diseases, autoimmune diseases, and cancers. Although pharmacological inhibition of ceramide formation often protects against these diseases in animal models, pharmacological modulation of ceramides in humans remains impractical.

View Article and Find Full Text PDF
Article Synopsis
  • Core loss spectroscopies offer detailed insights into redox processes in Li-ion battery cathodes, necessitating precise interpretation of their spectral features, particularly the oxygen K-edge spectra of lithium transition-metal oxides (LiMO).
  • Using density-functional theory (DFT), three exchange-correlation functionals were applied to simulate the spectra, with rSCAN showing a better alignment with experimental data compared to PBE and PBE +, especially for energies near the main edge.
  • The study demonstrates that DFT can effectively link experimental spectroscopic signatures to theoretical models, revealing the impact of structural distortions, chemical composition, and magnetism on the differentiation of materials with similar structures and magnetic states.
View Article and Find Full Text PDF

Lithium-rich early transition metal oxides are the source of excess removeable lithium that affords high energy density to lithium-rich battery cathodes. They are also candidates for solid electrolytes in all-solid-state batteries. These highly ionic compounds are sparse on phase diagrams of thermodynamically stable oxides, but soft chemical routes offer an alternative to explore new alkali-rich crystal chemistries.

View Article and Find Full Text PDF

The Open Databases Integration for Materials Design (OPTIMADE) application programming interface (API) empowers users with holistic access to a growing federation of databases, enhancing the accessibility and discoverability of materials and chemical data. Since the first release of the OPTIMADE specification (v1.0), the API has undergone significant development, leading to the v1.

View Article and Find Full Text PDF

Van der Waals (vdW) magnets both allow exploration of fundamental 2D physics and offer a route toward exploiting magnetism in next generation information technology, but vdW magnets with complex, noncollinear spin textures are currently rare. We report here the syntheses, crystal structures, magnetic properties and magnetic ground states of four bulk vdW metal-organic magnets (MOMs): FeCl(pym), FeCl(btd), NiCl(pym), and NiCl(btd), pym = pyrimidine and btd = 2,1,3-benzothiadiazole. Using a combination of neutron diffraction and bulk magnetometry we show that these materials are noncollinear magnets.

View Article and Find Full Text PDF

Intracellular transport among organellar compartments occurs in two general ways, by membrane-bound carriers or membrane contacts. Specific circumstances that involve the coordination of these two modes of transport remain to be defined. Studying Coat Protein I (COPI) transport, we find that phosphatidylcholine with short acyl chains (sPC) is delivered through membrane contact from the endoplasmic reticulum (ER) to sites of COPI vesicle formation at the Golgi to support the fission stage.

View Article and Find Full Text PDF

We have previously demonstrated that the glucocorticoid receptor β (GRβ) isoform induces hepatic steatosis in mice fed a normal chow diet. The GRβ isoform inhibits the glucocorticoid-binding isoform GRα, reducing responsiveness and inducing glucocorticoid resistance. We hypothesized that GRβ regulates lipids that cause metabolic dysfunction.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the specific carbohydrate (SCC) produced by the bacteria that cause dental caries, which is essential for their survival.
  • SCC features a structure made of a polyrhamnose backbone with glucose side-chains and glycerol phosphate decorations, and the research identifies one major and two minor glucose modifications on this carbohydrate.
  • The major glucose modification is crucial for biofilm formation and is created by specific enzymes, while both major and minor modifications affect the shape of the bacteria.
View Article and Find Full Text PDF

Sarcopenia burdens the older population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are lacking. The glucocorticoid prednisone remodels muscle metabolism on the basis of frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone administration rescued muscle quality in aged 24-month-old mice to a level comparable to that seen in young 4-month-old mice.

View Article and Find Full Text PDF

Background And Aims: Obesity and type 2 diabetes are significant risk factors for atherosclerotic cardiovascular disease (CVD) worldwide, but the underlying pathophysiological links are poorly understood. Neurotensin (NT), a 13-amino-acid hormone peptide, facilitates intestinal fat absorption and contributes to obesity in mice fed a high-fat diet. Elevated levels of pro-NT (a stable NT precursor produced in equimolar amounts relative to NT) are associated with obesity, type 2 diabetes, and CVD in humans.

View Article and Find Full Text PDF

In pursuit of accessible and interpretable methods for direct and real-time observation of mechanochemical reactions, we demonstrate a tandem spectroscopic method for monitoring of ball-milling transformations combining fluorescence emission and Raman spectroscopy, accompanied by high-level molecular and periodic density-functional theory (DFT) calculations, including periodic time-dependent (TD-DFT) modelling of solid-state fluorescence spectra. This proof-of-principle report presents this readily accessible dual-spectroscopy technique as capable of observing changes to the supramolecular structure of the model pharmaceutical system indometacin during mechanochemical polymorph transformation and cocrystallisation. The observed time-resolved spectroscopic and kinetic data are supported by X-ray diffraction and solid-state nuclear magnetic resonance spectroscopy measurements.

View Article and Find Full Text PDF
Article Synopsis
  • The case involves a hiker in Colorado who developed phytophotodermatitis after coming into contact with cow parsnip (Heracleum maximum), a plant that can cause painful skin reactions when exposed to UV-A rays.* -
  • Symptoms include a burning rash and blisters, and treatment focuses on maintaining wound hygiene, managing pain, and reducing inflammation.* -
  • Prevention strategies consist of avoiding trigger plants, protecting skin from sunlight, and promptly washing hands with soap after contact; it's important for medical professionals to consider phytophotodermatitis in diagnoses for blistering rashes in outdoor patients.*
View Article and Find Full Text PDF

Breast cancer cells produce negligible quantities of autotaxin. Instead, previous work indicated that adipocytes in the inflamed adipose tissue adjacent to breast tumors are a major source of autotaxin secretion that drives breast tumor growth, metastasis, and the loss of efficacy for chemotherapy and radiotherapy. To test this hypothesis, we used mice with an adipocyte-specific knock out of autotaxin.

View Article and Find Full Text PDF

Blast-induced traumatic brain injury (bTBI) has been identified as the signature injury of Operation Iraqi Freedom and Operation Enduring Freedom. Although the incidence of bTBI increased significantly after the introduction of improvised explosive devices, the mechanism of the injury is still uncertain, which is negatively impacting the development of suitable countermeasures. Identification of suitable biomarkers that could aid in the proper diagnosis of and prognosis for both acute and chronic bTBI is essential since bTBI frequently is occult and may not be associated with overtly detectable injuries to the head.

View Article and Find Full Text PDF

Studies have indicated that increasing plasma bilirubin levels might be useful for preventing and treating hepatic lipid accumulation that occurs with metabolic diseases such as obesity and diabetes. We have previously demonstrated that mice with hyperbilirubinemia had significantly less lipid accumulation in a diet-induced non-alcoholic fatty liver disease (NAFLD) model. However, bilirubin's effects on individual lipid species are currently unknown.

View Article and Find Full Text PDF

Several population studies have observed lower serum bilirubin levels in patients with non-alcoholic fatty liver disease (NAFLD). Yet, treatments to target this metabolic phenotype have not been explored. Therefore, we designed an N-Acetylgalactosamine (GalNAc) labeled RNAi to target the enzyme that clears bilirubin from the blood, the UGT1A1 glucuronyl enzyme (GNUR).

View Article and Find Full Text PDF

Understanding a material's electronic structure is crucial to the development of many functional devices from semiconductors to solar cells and Li-ion batteries. A material's properties, including electronic structure, are dependent on the arrangement of its atoms. However, structure determination (the process of uncovering the atomic arrangement), is impeded, both experimentally and computationally, by disorder.

View Article and Find Full Text PDF

First-principles crystal structure prediction (CSP) is the most powerful approach for materials discovery, enabling the prediction and evaluation of properties of new solid phases based only on a diagram of their underlying components. Here, we present the first CSP-based discovery of metal-organic frameworks (MOFs), offering a broader alternative to conventional techniques, which rely on geometry, intuition, and experimental screening. Phase landscapes were calculated for three systems involving flexible Cu(II) nodes, which could adopt a potentially limitless number of network topologies and are not amenable to conventional MOF design.

View Article and Find Full Text PDF
Article Synopsis
  • Metal-organic magnets (MOMs) are innovative materials made of metal atoms linked by organic substances and show potential for future quantum technologies due to their low-dimensional structures.
  • The study introduces CrCl(pym), a new quasi-1D magnetic material with a spin of 2, revealing that the magnetic interactions in this compound inhibit the formation of the Haldane phase, a key quantum state that's only been observed for spins of 1.
  • Using various techniques like X-ray diffraction and inelastic neutron spectroscopy, the research highlights that while CrCl(pym) has weak ferromagnetic coupling, it still remains close to the Haldane phase, indicating that similar MOMs could be valuable in the quest for the elusive
View Article and Find Full Text PDF

Exposure to certain per-and polyfluoroalkyl substances (PFAS) has been shown to be positively associated with total and/or low-density lipoprotein cholesterol. Examining this association in lipid lowering interventions may provide additional evidence linking PFAS to cardiovascular risk. We examined the relationship of 6 PFAS with cholesterol in a 6-month lifestyle-based intervention.

View Article and Find Full Text PDF

Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) is an organophosphate flame retardant. The primary TDCPP metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCPP), is detectable in the urine of over 90 % of Americans. Epidemiological studies show sex-specific associations between urinary BDCPP levels and metabolic syndrome, which is an established risk factor for type 2 diabetes, heart disease, and stroke.

View Article and Find Full Text PDF