Phytoplankton Chl:C:N:P ratios are important from both an ecological and a biogeochemical perspective. We show that these elemental ratios can be represented by a phytoplankton physiological model of low complexity that includes major cellular macromolecular pools. In particular, our model resolves time-dependent intracellular pools of chlorophyll, proteins, nucleic acids, carbohydrates/lipids, and N and P storage.
View Article and Find Full Text PDFDinoflagellate genomes have a unique architecture that may constrain their physiological and biochemical responsiveness to environmental stressors. Here we quantified how nitrogen (N) starvation influenced macromolecular allocation and C:N:P of three photosynthetic marine dinoflagellates, representing different taxonomic classes and genome sizes. Dinoflagellates respond to nitrogen starvation by decreasing cellular nitrogen, protein and RNA content, but unlike many other eukaryotic phytoplankton examined RNA:protein is invariant.
View Article and Find Full Text PDFMarine planktonic diatoms are among the most important contributors to phytoplankton blooms and marine net primary production. Their ecological success has been attributed to their ability to rapidly respond to changing environmental conditions. Here, we report common molecular mechanisms used by the model marine diatom Thalassiosira pseudonana to respond to 10 diverse environmental stressors using RNA-Seq analysis.
View Article and Find Full Text PDFThe elemental composition of marine microorganisms (their C:N:P ratio, or stoichiometry) is central to understanding the biotic and biogeochemical processes underlying key marine ecosystem functions. Phytoplankton C:N:P is species specific and flexible to changing environmental conditions. However, bulk or fixed phytoplankton stoichiometry is usually assumed in biogeochemical and ecological models because more realistic, environmentally responsive C:N:P ratios have yet to be defined for key functional groups.
View Article and Find Full Text PDFDispersants can aid dispersion and biodegradation of oil in seawater, but the wider ecotoxicological effects of oil and dispersant to the base of marine food webs is unclear. Here we apply a metatranscriptomic approach to identify molecular responses of a natural marine microbial eukaryotic community to oil and chemically dispersed oil. Oil exposure stimulated the upregulation of ketogenesis in the eukaryotic community, which may alleviate carbon- and energy-limitation and reduce oxidative stress.
View Article and Find Full Text PDFCopepods are among the most abundant marine metazoans and form a key link between marine primary producers, higher trophic levels, and carbon sequestration pathways. Climate change is projected to change surface ocean temperature by up to 4°C in the North Atlantic with many associated changes including slowing of the overturning circulation, areas of regional freshening, and increased salinity and reductions in nutrients available in the euphotic zone over the next century. These changes will lead to a restructuring of phytoplankton and zooplankton communities with cascading effects throughout the food web.
View Article and Find Full Text PDFStressful environmental conditions can induce many different acclimation mechanisms in marine phytoplankton, resulting in a range of changes in their photophysiology. Here we characterize the common photophysiological stress response of the model diatom Thalassiosira pseudonana to ten environmental stressors and identify diagnostic responses to particular stressors. We quantify the magnitude and temporal trajectory of physiological parameters including the functional absorption cross-section of PSII (σ ), quantum efficiency of PSII, non-photochemical quenching (NPQ), cell volume, Chl a, and carotenoid (Car) content in response to nutrient starvation (nitrogen (N), phosphorus (P), silicon (Si), and iron (Fe)), changes in temperature, irradiance, pH, and reactive oxygen species (ROS) over 5 time points (0, 2, 6, 24, 72 h).
View Article and Find Full Text PDFWe first present a predator-prey model for two species and then extend the model to three species where the two predator species engage in mutualistic predation. Constant effort harvesting and the impact of by-catch issue are also incorporated. Necessary sufficient conditions for the existence and stability of positive equilibrium points are examined.
View Article and Find Full Text PDFWe introduce a Bayesian framework for simultaneous feature selection and outlier detection in sparse high-dimensional regression models, with a focus on quantitative trait locus (QTL) mapping in experimental crosses. More specifically, we incorporate the robust mean shift outlier handling mechanism into the multiple QTL mapping regression model and apply LASSO regularization concurrently to the genetic effects and the mean-shift terms through the flexible extended Bayesian LASSO (EBL) prior structure, thereby combining QTL mapping and outlier detection into a single sparse model representation problem. The EBL priors on the mean-shift terms prevent outlying phenotypic values from distorting the genotype-phenotype association and allow their detection as cases with outstanding mean shift values following the LASSO shrinkage.
View Article and Find Full Text PDFThe Deepwater Horizon oil spill released millions of barrels of crude oil into the Gulf of Mexico, and saw widespread use of the chemical dispersant Corexit. We assessed the role of traits, such as cell size, cell wall, motility, and mixotrophy on the growth and photosynthetic response of 15 phytoplankton taxa to oil and Corexit. We collected growth and photosynthetic data on five algal cultures.
View Article and Find Full Text PDFSpecies-level variability has made it difficult to determine the relative sensitivity of phytoplankton to oil and mixtures of oil and dispersant. Here we develop a phytoplankton group sensitivity index using ribosome sequence data that we apply to a mesocosm experiment in which a natural microbial community was exposed to oil and two oil-dispersant mixtures. The relative sensitivity of four phytoplankton taxonomic groups, diatoms, dinoflagellates, green algae, and Chrysophytes, was computed using the log of the ratio of the number of species that increase to the number that decrease in relative abundance in the treatment relative to the control.
View Article and Find Full Text PDFThe macromolecular composition of macroalgae influences nutrient flow and food quality in aquatic ecosystems and the value of macroalgae species for human consumption, aquaculture, biofuels, and other applications. We used literature data (125 publications, 1,117 observations) and a hierarchal Bayesian statistical model to estimate the average macromolecular composition, protein, lipid, and carbohydrate of macroalgae as a whole and at the phylum level. Our focus was on marine, noncalcified macroalgae sampled from wild-grown populations in the field.
View Article and Find Full Text PDFDiatoms are important contributors to marine primary production and the ocean carbon cycle, yet the molecular mechanisms that regulate their acclimation and adaptation to temperature are poorly understood. Here we use a transcriptomic approach to investigate the molecular mechanisms associated with temperature acclimation and adaptation in closely related colder- and warmer-adapted diatom species. We find evidence that evolutionary changes in baseline gene expression, which we termed transcriptional investment or divestment, is a key mechanism used by diatoms to adapt to different growth temperatures.
View Article and Find Full Text PDFBiogeochemical cycles in the ocean are strongly affected by the elemental stoichiometry (C:N:P) of phytoplankton, which largely reflects their macromolecular content. A greater understanding of how this macromolecular content varies among phytoplankton taxa and with resource limitation may strengthen physiological and biogeochemical modeling efforts. We determined the macromolecular basis (protein, carbohydrate, lipid, nucleic acids, pigments) of C:N:P in diatoms and prasinophytes, two globally important phytoplankton taxa, in response to N starvation.
View Article and Find Full Text PDFDuring the 2010 Deepwater Horizon oil spill, the chemical dispersant Corexit was applied over vast areas of the Gulf of Mexico. Marine phytoplankton play a key role in aggregate formation through the production of extracellular polymeric materials (EPS), an important step in the biological carbon pump. This study examined the impacts of oil and dispersants on the composition and physiology of natural marine phytoplankton communities from the Gulf of Mexico during a 72-hour mesocosm experiment and consequences to carbon export.
View Article and Find Full Text PDFNitrogen stress is an important control on the growth of phytoplankton and varying responses to this common condition among taxa may affect their relative success within phytoplankton communities. We analyzed photosynthetic responses to nitrogen (N) stress in two classes of phytoplankton that often dominate their respective size ranges, diatoms and prasinophytes, selecting species of distinct niches within each class. Changes in photosynthetic structures appeared similar within each class during N stress, but photophysiological and growth responses were more species- or niche-specific.
View Article and Find Full Text PDFThe elemental stoichiometry of microalgae reflects their underlying macromolecular composition and influences competitive interactions among species and their role in the food web and biogeochemistry. Here we provide a new estimate of the macromolecular composition of microalgae using a hierarchical Bayesian analysis of data compiled from the literature. The median macromolecular composition of nutrient-sufficient exponentially growing microalgae is 32.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2016
Anthropogenic climate change has shifted the biogeography and phenology of many terrestrial and marine species. Marine phytoplankton communities appear sensitive to climate change, yet understanding of how individual species may respond to anthropogenic climate change remains limited. Here, using historical environmental and phytoplankton observations, we characterize the realized ecological niches for 87 North Atlantic diatom and dinoflagellate taxa and project changes in species biogeography between mean historical (1951-2000) and future (2051-2100) ocean conditions.
View Article and Find Full Text PDF