Publications by authors named "Andrew J Henderson"

People with HIV exhibit persistent inflammation that correlates with HIV-associated comorbidities including accelerated aging, increased risk of cardiovascular disease, and neuroinflammation. Mechanisms that perpetuate chronic inflammation in people with HIV undergoing antiretroviral treatments are poorly understood. One hypothesis is that the persistent low-level expression of HIV proviruses, including RNAs generated from defective proviral genomes, drives the immune dysfunction that is responsible for chronic HIV pathogenesis.

View Article and Find Full Text PDF

Of the 12 million people who inject drugs worldwide, 13% live with HIV. Whether opioid use impacts HIV pathogenesis and latency is an outstanding question. To gain insight into whether opioid use influences the proviral landscape and latent HIV reservoir, we performed intact proviral DNA assays (IPDA) on peripheral blood mononuclear cells (PBMCs) from antiretroviral therapy (ART)-suppressed people living with HIV (PWH) with or without current opioid use.

View Article and Find Full Text PDF

Defective HIV-1 proviruses represent a population of viral genomes that are selected for by immune pressures, and clonally expanded to dominate the persistent HIV-1 proviral genome landscape. There are examples of RNA and protein expression from these compromised genomes which are generated by a variety of mechanisms. Despite the evidence that these proviruses are transcribed and translated, their role in HIV pathogenesis has not been fully explored.

View Article and Find Full Text PDF

The development of therapies to eliminate the latent HIV-1 reservoir is hampered by our incomplete understanding of the biomolecular mechanism governing HIV-1 latency. To further complicate matters, recent single-cell RNA sequencing (scRNA-seq) studies reported extensive heterogeneity between latently HIV-1-infected primary T cells, implying that latent HIV-1 infection can persist in greatly differing host cell environments. We show here that transcriptomic heterogeneity is also found between latently infected T cell lines, which allowed us to study the underlying mechanisms of intercell heterogeneity at high signal resolution.

View Article and Find Full Text PDF

HIV-1 establishes a persistent proviral reservoir by integrating into the genome of infected host cells. Current antiretroviral treatments do not target this persistent population of proviruses which include latently infected cells that upon treatment interruption can be reactivated to contribute to HIV-1 rebound. Deep sequencing of persistent HIV proviruses has revealed that greater than 90% of integrated HIV genomes are defective and unable to produce infectious virions.

View Article and Find Full Text PDF

Biorepositories provide a critical resource for gaining knowledge of emerging infectious diseases and offer a mechanism to rapidly respond to outbreaks; the emergence of the novel coronavirus, SARS-CoV-2, has proved their importance. During the COVID-19 pandemic, the absence of centralized, national biorepository efforts meant that the onus fell on individual institutions to establish sample repositories. As a safety-net hospital, Boston Medical Center (BMC) recognized the importance of creating a COVID-19 biorepository to both support critical science at BMC and ensure representation in research for its urban patient population, most of whom are from underserved communities.

View Article and Find Full Text PDF

The ability of Enterococcus faecalis to colonize host anatomical sites is dependent on its adaptive response to host conditions. Three glycosyl hydrolase gene clusters, each belonging to glycosyl hydrolase family 18 (GH18) (, , and ), in E. faecalis were previously found to be upregulated under glucose-limiting conditions.

View Article and Find Full Text PDF

The molecular networks involved in the regulation of HIV replication, transcription, and latency remain incompletely defined. To expand our understanding of these networks, we performed an unbiased high-throughput yeast one-hybrid screen, which identified 42 human transcription factors and 85 total protein-DNA interactions with HIV-1 and HIV-2 long terminal repeats. We investigated a subset of these transcription factors for transcriptional activity in cell-based models of infection.

View Article and Find Full Text PDF

Antimicrobial stewardship (AMS) is well established in Australian hospitals. Electronic medical record (EMR) implementation has lagged in Australia, with two Healthcare Information and Management Systems Society (HIMSS) Stage 6 hospitals and one Stage 7 hospital as of September 2020. Specific barriers faced by AMS teams with paper-based prescribing and medical records include real-time identification of antimicrobials orders; the ability to prospectively monitor antimicrobial use; and the integration of fundamental point of prescribing AMS principles into routine clinical practice.

View Article and Find Full Text PDF

The major barrier to HIV-1 cure is the persistence of latent provirus, which is not eradicated by antiretroviral therapy. The "shock and kill" approach entails stimulating viral production with latency-reversing agents followed by the killing of cells actively producing the virus by immune clearance. However, this approach does not induce all intact proviruses, leaving a residual reservoir.

View Article and Find Full Text PDF

Chronic opioid usage not only causes addiction behavior through the central nervous system, but also modulates the peripheral immune system. However, how opioid impacts the immune system is still barely characterized systematically. In order to understand the immune modulatory effect of opioids in an unbiased way, here we perform single-cell RNA sequencing (scRNA-seq) of peripheral blood mononuclear cells from opioid-dependent individuals and controls to show that chronic opioid usage evokes widespread suppression of antiviral gene program in naive monocytes, as well as in multiple immune cell types upon stimulation with the pathogen component lipopolysaccharide.

View Article and Find Full Text PDF

Background: Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV) coinfection increases mortality, accelerates progression to acquired immune deficiency syndrome, and exacerbates tuberculosis disease. However, the impact of pre-existing Mtb infection on subsequent HIV infection has not been fully explored. We hypothesized that Mtb infection creates an immunological environment that influences the course of HIV infection, and we investigated whether pre-existing Mtb infection impacts the susceptibility of CD4+ T cells to HIV-1 infection.

View Article and Find Full Text PDF

Despite the success of antiretroviral therapies, there is no cure for HIV-1 infection due to the establishment of a long-lived latent reservoir that fuels viral rebound upon treatment interruption. 'Shock-and-kill' strategies to diminish the latent reservoir have had modest impact on the reservoir leading to considerations of alternative approaches to target HIV-1 proviruses. This review explores approaches to target HIV-1 transcription as a way to block the provirus expression.

View Article and Find Full Text PDF

We report symptomatic confirmed modified measles infection in a person with one documented MMR (measles, mumps, rubella) vaccination and travel to Indonesia. No secondary cases were identified, consistent with other case reports of modified measles infection. The infectivity of modified measles for contact tracing requirements requires further elucidation.

View Article and Find Full Text PDF

A major barrier to curing HIV-1 is the long-lived latent reservoir that supports re-emergence of HIV-1 upon treatment interruption. Targeting this reservoir will require mechanistic insights into the establishment and maintenance of HIV-1 latency. Whether T cell signaling at the time of HIV-1 infection influences productive replication or latency is not fully understood.

View Article and Find Full Text PDF

HIV-1 spreads through both the release of cell-free particles and by cell-to-cell transmission. Mounting evidence indicates that cell-to-cell transmission is more efficient than cell-free transmission of particles and likely influences the pathogenesis of HIV-1 infection. This mode of viral transmission also influences the generation and maintenance of the latent reservoir, which represents the main obstacle for curing the infection.

View Article and Find Full Text PDF

HIV-1 is transmitted between T cells through the release of cell-free particles and through cell-cell contact. Cell-to-cell transmission is more efficient than cell-free virus transmission, mediates resistance to immune responses, and facilitates the spread of virus among T cells. However, whether HIV cell-to-cell transmission influences the establishment of HIV-1 latency has not been carefully explored.

View Article and Find Full Text PDF

Latent infection of CD4 T cells is the main barrier to eradicating HIV-1 infection from infected patients. The cellular and molecular mechanisms involved in the establishment and maintenance of latent infection are directly linked to the transcriptional program of the different CD4 T cell subsets targeted by the virus. In this review, we provide an overview of how T cell activation, T cell differentiation into functional subsets, and the mode of initial viral infection influence HIV proviral transcription and entry into latency.

View Article and Find Full Text PDF

Despite advances in antiretroviral therapy, HIV-1 infection remains incurable in patients and continues to present a significant public health burden worldwide. While a number of factors contribute to persistent HIV-1 infection in patients, the presence of a stable, long-lived reservoir of latent provirus represents a significant hurdle in realizing an effective cure. One potential strategy to eliminate HIV-1 reservoirs in patients is reactivation of latent provirus with latency reversing agents in combination with antiretroviral therapy, a strategy termed "shock and kill".

View Article and Find Full Text PDF

Viral protein R (Vpr) is an HIV-1 accessory protein whose function remains poorly understood. In this report, we sought to determine the requirement of Vpr for facilitating HIV-1 infection of monocyte-derived dendritic cells (MDDCs), one of the first cell types to encounter virus in the peripheral mucosal tissues. In this report, we characterize a significant restriction of Vpr-deficient virus replication and spread in MDDCs alone and in cell-to-cell spread in MDDC-CD4 T cell cocultures.

View Article and Find Full Text PDF

Periodontal infections contribute to HIV-associated co-morbidities in the oral cavity and provide a model to interrogate the dysregulation of macrophage function, inflammatory disease progression, and HIV replication during co-infections. We investigated the effect of Porphyromonas gingivalis on the establishment of HIV infection in monocyte-derived macrophages. HIV replication in macrophages was significantly repressed in the presence of P.

View Article and Find Full Text PDF

Chromatin influences Human Immunodeficiency Virus (HIV) integration and replication. This review highlights critical host factors that influence chromatin structure and organization and that also impact HIV integration, transcriptional regulation and latency. Furthermore, recent attempts to target chromatin associated factors to reduce the HIV proviral load are discussed.

View Article and Find Full Text PDF

Since HIV-1 has a propensity to integrate into actively expressed genes, transcriptional interference from neighboring host promoters has been proposed to contribute to the establishment and maintenance HIV-1 latency. To gain insights into how endogenous promoters influence HIV-1 transcription we utilized a set of inducible T cell lines and characterized whether there were correlations between expression of endogenous genes, provirus and long terminal repeat architecture. We show that neighboring promoters are active but have minimal impact on HIV-1 transcription, in particular, expression of the endogenous gene did not prevent expression of HIV-1 following induction of latent provirus.

View Article and Find Full Text PDF

CD4(+) T cell subsets differentially support HIV-1 replication. For example, quiescent CD4(+) memory T cells are susceptible to HIV-1 infection but do not support robust HIV-1 transcription and have been implicated as the primary reservoir of latent HIV-1. T cell transcription factors that regulate maturation potentially limit HIV-1 transcription and mediate the establishment and maintenance of HIV-1 latency.

View Article and Find Full Text PDF

Purpose Of Review: This review highlights the control of transcriptional networks, including induction of inhibitory receptors, by T cell-specific transcription factors in exhausted T cells that accumulate in chronic viral infections including HIV.

Recent Findings: Transcriptional profiling has established distinct molecular phenotypes for exhausted CD4 and CD8 T cells in chronic viral infection models. There exists a subset of transcription factors associated with exhaustion, notably Blimp-1, basic leucine zipper transcription factor, ATF-like and Helios.

View Article and Find Full Text PDF