Oncolytic viruses possess the ability to infect, replicate and lyse malignantly transformed tumour cells. This oncolytic activity amplifies the therapeutic advantage and induces a form of immunogenic cell death, characterized by increased CD8 T-cell infiltration into the tumour microenvironment. This important feature of oncolytic viruses can result in the warming up of immunologically 'cold' tumour types, presenting the enticing possibility that oncolytic virus treatment combined with immunotherapies may enhance efficacy.
View Article and Find Full Text PDFT cell recognition of peptides presented by human leukocyte antigens (HLAs) is mediated by the highly variable T cell receptor (TCR). Despite this built-in TCR variability, individuals can mount immune responses against viral epitopes by using identical or highly related TCRs expressed on CD8 T cells. Characterization of these TCRs has extended our understanding of the molecular mechanisms that govern the recognition of peptide-HLA.
View Article and Find Full Text PDFHere, we report an update of the VDJdb database with a substantial increase in the number of T-cell receptor (TCR) sequences and their cognate antigens. The update further provides a new database infrastructure featuring two additional analysis modes that facilitate database querying and real-world data analysis. The increased yield of TCR specificity identification methods and the overall increase in the number of studies in the field has allowed us to expand the database more than 5-fold.
View Article and Find Full Text PDFFluorochrome-conjugated peptide-MHC (pMHC) class I multimers are staple components of the immunologist's toolbox, enabling reliable quantification and analysis of Ag-specific CD8(+) T cells irrespective of functional outputs. In contrast, widespread use of the equivalent pMHC class II (pMHC-II) reagents has been hindered by intrinsically weaker TCR affinities for pMHC-II, a lack of cooperative binding between the TCR and CD4 coreceptor, and a low frequency of Ag-specific CD4(+) T cell populations in the peripheral blood. In this study, we show that peptide flanking regions, extending beyond the central nonamer core of MHC-II-bound peptides, can enhance TCR-pMHC-II binding and T cell activation without loss of specificity.
View Article and Find Full Text PDFFoxp3(+) regulatory T cells (Tregs) are often highly enriched within the tumor-infiltrating T cell pool. Using a well-characterised model of carcinogen-induced fibrosarcomas we show that the enriched tumor-infiltrating Treg population comprises largely of CXCR3(+) T-bet(+) 'TH1-like' Tregs which are thymus-derived Helios(+) cells. Whilst IL-2 maintains homeostatic ratios of Tregs in lymphoid organs, we found that the perturbation in Treg frequencies in tumors is IL-2 independent.
View Article and Find Full Text PDFAnalysis of antigen-specific T-cell populations by flow cytometry with peptide-MHC (pMHC) multimers is now commonplace. These reagents allow the tracking and phenotyping of T cells during infection, autoimmunity and cancer, and can be particularly revealing when used for monitoring therapeutic interventions. In 2009, we reviewed a number of 'tricks' that could be used to improve this powerful technology.
View Article and Find Full Text PDFMHC anchor residue-modified "heteroclitic" peptides have been used in many cancer vaccine trials and often induce greater immune responses than the wild-type peptide. The best-studied system to date is the decamer MART-1/Melan-A26-35 peptide, EAAGIGILTV, where the natural alanine at position 2 has been modified to leucine to improve human leukocyte antigen (HLA)-A*0201 anchoring. The resulting ELAGIGILTV peptide has been used in many studies.
View Article and Find Full Text PDFαβ T-cell receptors (TCRs) engage antigens using complementarity-determining region (CDR) loops that are either germ line-encoded (CDR1 and CDR2) or somatically rearranged (CDR3). TCR ligands compose a presentation platform (major histocompatibility complex (MHC)) and a variable antigenic component consisting of a short "foreign" peptide. The sequence of events when the TCR engages its peptide-MHC (pMHC) ligand remains unclear.
View Article and Find Full Text PDFBalancing the generation of immune responses capable of controlling virus replication with those causing immunopathology is critical for the survival of the host and resolution of influenza-induced inflammation. Based on the capacity of interleukin-6 (IL-6) to govern both optimal T-cell responses and inflammatory resolution, we hypothesised that IL-6 plays an important role in maintaining this balance. Comparison of innate and adaptive immune responses in influenza-infected wild-type control and IL-6-deficient mice revealed striking differences in virus clearance, lung immunopathology and generation of heterosubtypic immunity.
View Article and Find Full Text PDFThe evolution of immune blockades in tumors limits successful antitumor immunity, but the mechanisms underlying this process are not fully understood. Depletion of regulatory T cells (Treg), a T-cell subset that dampens excessive inflammatory and autoreactive responses, can allow activation of tumor-specific T cells. However, cancer immunotherapy studies have shown that a persistent failure of activated lymphocytes to infiltrate tumors remains a fundamental problem.
View Article and Find Full Text PDFCD8(+) T cells recognize immunogenic peptides presented at the cell surface bound to MHCI molecules. Ag recognition involves the binding of both TCR and CD8 coreceptor to the same peptide-MHCI (pMHCI) ligand. Specificity is determined by the TCR, whereas CD8 mediates effects on Ag sensitivity.
View Article and Find Full Text PDFBackground: Seasonal influenza A infection affects a significant cohort of the global population annually, resulting in considerable morbidity and mortality. Therapeutic strategies are of limited efficacy, and during a pandemic outbreak would only be available to a minority of the global population. Over-the-counter medicines are routinely taken by individuals suffering from influenza, but few studies have been conducted to determine their effectiveness in reducing pulmonary immunopathology or the influence they exert upon the generation of protective immunity.
View Article and Find Full Text PDFA significant enrichment of CD4(+)Foxp3(+) T cells (regulatory T cells, Treg) is frequently observed in murine and human carcinomas. As Tregs can limit effective antitumor immune responses, thereby promoting tumor progression, it is important that the mechanisms underpinning intratumoral accumulation of Tregs are identified. Because of evidence gathered mostly in vitro, the conversion of conventional T cells (Tconv) into Tregs has been proposed as one such mechanism.
View Article and Find Full Text PDFDespite its use widely as a therapeutic agent, and proposed use as vaccine adjuvant, the effect of IFNalpha on T cell function is poorly understood. As a pleiotropic innate cytokine produced rapidly in response to pathogens, it is well placed to impinge on specific immune responses. The aim of this study was to examine the impact of IFNalpha on the function of human memory CD4(+) T cells using the recall Ags purified protein derivative, tetanus toxoid, and hemagglutinin.
View Article and Find Full Text PDFCD59, a broadly expressed GPI-anchored molecule, regulates formation of the membrane attack complex of the complement cascade. We previously demonstrated that mouse CD59 also down-modulates CD4(+) T cell activity in vivo. In this study, we explored the role of CD59 on human CD4(+) T cells.
View Article and Find Full Text PDFFlow cytometry with fluorochrome-conjugated peptide-major histocompatibility complex (pMHC) tetramers has transformed the study of antigen-specific T-cells by enabling their visualization, enumeration, phenotypic characterization and isolation from ex vivo samples. Here, we demonstrate that the reversible protein kinase inhibitor (PKI) dasatinib improves the staining intensity of human (CD8+ and CD4+) and murine T-cells without concomitant increases in background staining. Dasatinib enhances the capture of cognate pMHC tetramers from solution and produces higher intensity staining at lower pMHC concentrations.
View Article and Find Full Text PDFCurrently, our understanding of mechanisms underlying cell-mediated immunity and particularly of mechanisms that promote robust T cell memory to respiratory viruses is incomplete. Interleukin (IL)-6 has recently re-emerged as an important regulator of T cell proliferation and survival. Since IL-6 is abundant following infection with influenza virus, we analyzed virus-specific T cell activity in both wild type and IL-6 deficient mice.
View Article and Find Full Text PDFThe interaction between T cell receptors (TCR) and peptide-major histocompatibility complex (pMHC) antigens can lead to varying degrees of agonism (T cell activation), or antagonism. The P14 TCR recognises the lymphocytic choriomeningitis virus (LCMV)-derived peptide, gp33 residues 33-41 (KAVYNFATC), presented in the context of H-2D(b). The cellular responses to various related H-2D(b) peptide ligands are very well characterised, and P14 TCR-transgenic mice have been used extensively in models of virus infection, autoimmunity and tumour rejection.
View Article and Find Full Text PDFBackground: A wealth of evidence obtained using mouse models indicates that CD4(+)CD25(+)FOXP3(+) regulatory T cells (Treg) maintain peripheral tolerance to self-antigens and also inhibit anti-tumor immune responses. To date there is limited information about CD4(+) T cell responses in patients with colorectal cancer (CRC). We set out to measure T cell responses to a tumor-associated antigen and examine whether Treg impinge on those anti-tumor immune responses in CRC patients.
View Article and Find Full Text PDFNaturally occurring regulatory T cells (Tregs) have been shown to suppress immune responses to self-antigens, thereby limiting autoimmunity. In the case of tumours, where immune responses to self-antigens are beneficial and lead to elimination of the tumour, such suppressive activity is actually detrimental to the host. Manipulation of Tregs holds great promise for the immunotherapy of cancer.
View Article and Find Full Text PDFThe generation of memory lymphocytes is one of the hallmarks of the specific immune response. The CD4(+) T cell response is of critical importance in maintaining long-term protective immunity after clearing many infections. However, accurate characterization of these memory CD4(+) T cells has relied mainly on mouse studies and is poorly understood in humans.
View Article and Find Full Text PDF