The mutagenic-impurity control strategy for a second generation manufacturing route to the non-mutagenic antipneumocystic agent atovaquone (2-((1R,4R)-4-(4-chlorophenyl)cyclohexyl)-3-hydroxynaphthalene-1,4-dione) 1 is described. Preliminary assessment highlighted multiple materials of concern which were largely discharged either through returning a negative bacterial mutagenicity assay or through confidence that the impurity would be purged during the downstream processing from when it was first introduced. Additional genotoxicity testing highlighted two materials of concern where initial assessment suggested that testing for these impurities at trace levels within the drug substance would be required.
View Article and Find Full Text PDFPalatability and patient acceptability are critical attributes of dispersible tablet formulation. Co-processed excipients could provide improved organoleptic profile due to rational choice of excipients and manufacturing techniques. The aim of this study was to identify the most suitable co-processed excipient to use within directly compressible dispersible tablet formulations.
View Article and Find Full Text PDFCo-processed excipients may enhance functionality and reduce drawbacks of traditional excipients for the manufacture of tablets on a commercial scale. The following study aimed to characterise a range of co-processed excipients that may prove suitable for dispersible tablet formulations prepared by direct compression. Co-processed excipients were lubricated and compressed into 10.
View Article and Find Full Text PDFWe tested serum samples from 387 free-ranging wolves ( Canis lupus ) from 2007 to 2013 for exposure to eight canid pathogens to establish baseline data on disease prevalence and spatial distribution in Minnesota's wolf population. We found high exposure to canine adenoviruses 1 and 2 (88% adults, 45% pups), canine parvovirus (82% adults, 24% pups), and Lyme disease (76% adults, 39% pups). Sixty-six percent of adults and 36% of pups exhibited exposure to the protozoan parasite Neospora caninum .
View Article and Find Full Text PDFCocrystals and amorphous solid dispersions have generated interest in the pharmaceutical industry as an alternative to more established solid delivery forms. The identification of intermolecular hydrogen bonding interactions in a nicotinamide palmitic acid cocrystal and a 50% w/w acetaminophen-polyvinylpyrrolidone solid dispersion are reported using advanced solid-state magic-angle spinning (MAS) NMR methods. The application of a novel (14)N-(1)H HMQC experiment, where coherence transfer is achieved via through-space couplings, is shown to identify specific hydrogen bonding motifs.
View Article and Find Full Text PDFThe DMAIC (Define, Measure, Analyse, Improve and Control) framework and associated statistical tools have been applied to both identify and reduce variability observed in a quantitative (19)F solid-state NMR (SSNMR) analytical method. The method had been developed to quantify levels of an additional polymorph (Form 3) in batches of an active pharmaceutical ingredient (API), where Form 1 is the predominant polymorph. In order to validate analyses of the polymorphic form, a single batch of API was used as a standard each time the method was used.
View Article and Find Full Text PDFAssessments of the condition of moose (Alces alces) may be particularly informative to understanding the dynamics of populations and other influential factors. During February-March 2003 to 2005, we assessed the nutritional condition of 79 moose (39 females, 40 males) in northeastern Minnesota by body condition scoring (BCS(F), scale of 0-10); 67 of these by were assessed by ultrasonographic measurements of rump fat (Maxfat), which was used to estimate ingesta-free body fat (IFBF) in all but two of the females. Scores of the BCS(F) were related (r(2)=0.
View Article and Find Full Text PDFWe report a novel use of solid-state ¹⁹F nuclear magnetic resonance to detect and quantify polytetrafluoroethylene contamination from laboratory equipment, which due to low quantity (up to 1% w/w) and insolubility remained undetected by standard analytical techniques. Solid-state ¹⁹F NMR is shown to be highly sensitive to such fluoropolymers (detection limit 0.02% w/w), and is demonstrated as a useful analytical tool for structure elucidation of unknown solid materials.
View Article and Find Full Text PDFSolid-state NMR (SSNMR) can provide detailed structural information about amorphous solid dispersions of pharmaceutical small molecules. In this study, the ability of SSNMR experiments based on dipolar correlation, spin diffusion, and relaxation measurements to characterize the structure of solid dispersions is explored. Observation of spin diffusion effects using the 2D (1)H-(13)C cross-polarization heteronuclear correlation (CP-HETCOR) experiment is shown to be a useful probe of association between the amorphous drug and polymer that is capable of directly proving glass solution formation.
View Article and Find Full Text PDFHigh-performance liquid chromatography-solid phase extraction-NMR spectroscopy (HPLC-SPE-NMR) has recently become commercially available and has been evaluated with regard to its applicability in a pharmaceutical environment. The addition of an automated SPE unit to an HPLC-NMR system for peak trapping results in an improved NMR signal-to-noise ratio (S/N) and also has other practical advantages. The trapping efficiency is shown to depend on compound polarity and is highest for compounds eluting late on reversed-phase HPLC systems.
View Article and Find Full Text PDFA 17-year-old male presented with right knee pain following mild trauma whilst playing badminton. He subsequently developed a popliteal pseudoaneurysm secondary to trauma from a tibial osteochondroma. This is a recognised though very rare occurrence.
View Article and Find Full Text PDFThe pyrazolato (Pz) rhodium(I) complexes [{Rh(&mgr;-Pz)(CO)(L)}(2)] (L = CNBu(t), P(OMe)(3), PMe(2)Ph, P(OPh)(3), P(p-tolyl)(3)) result from the reaction of [{Rh(&mgr;-Pz)(CO)(2)}(2)] with the appropriate L ligand in a trans:cis ratio ranging from 60:40 (L = CNBu(t)) to 95:5 (L = P(p-tolyl)(3)). The pure trans isomers add 1 molar equiv of diiodine to give the dirhodium(II) complexes [{Rh(&mgr;-Pz)(I)(CO)(L)}(2)] (L = CNBu(t) (6), P(OMe)(3) (7), PMe(2)Ph (8), P(OPh)(3) (9)). These complexes incorporate two iodide ligands trans to the rhodium-rhodium bond, as substantiated by the X-ray structure for 7, while the complex [(P{p-tolyl}(3))(CO)(I)Rh(&mgr;-Pz)(2)(&mgr;-CO)Rh(I)(P{p-tolyl}(3))] (10) contains a bridging ketonic CO ligand, due to the insertion of a terminal CO into the metal-metal bond.
View Article and Find Full Text PDFReaction of the dinuclear complex [Rh(2)(&mgr;-HBzimt)(2)(cod)(2)] with [Rh(2)(&mgr;-Cl)(2)(cod)(2)] (cod = 1,5-cyclooctadiene) gives the neutral tetranuclear complex [Rh(4)(&mgr;-HBzimt)(2)Cl(2)(cod)(4)] (2) in dichloromethane and the trinuclear cationic complex [Rh(3)(&mgr;-HBzimt)(2)(cod)(3)]Cl (3) in methanol, respectively. The ionization ability of the solvent seems to be the driving force to give 3, while the ability to coordinate a further RhCl(cod) fragment leads to 2 in poorer ionizing media. The complexes [M(4)(&mgr;-HBzimt)(2)Cl(2)(diolefin)(4)] (M = Rh, diolefin = tetrafluorobenzobarrelene (tfbb) (5); M = Ir, diolefin = cod (6)), formally analogous to 2, were isolated from the reactions of the appropriate complexes [MCl(H(2)Bzimt)(diolefin)] and [M(acac)(diolefin)] in acetone.
View Article and Find Full Text PDFTreatment of the metallo ligands [ML(pz)(2)(Hpz)] (pz = pyrazolate; L = C(5)Me(5), M = Ir (1); L = mesitylene, M = Ru (3)) with [M'Cl{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (4), Ni (5)) yields heterodinuclear complexes of formula [LM(&mgr;-pz)(2)(&mgr;-Cl)M'{HB(3-i-Pr-4-Br-pz)(3)}] (L = C(5)Me(5); M = Ir; M' = Co (6), Ni (7). L = mesitylene; M = Ru; M' = Co (8)). The related complex [Ru(eta(6)-p-cymene)(pz)(2)(Hpz)] (2) reacts with equimolar amounts of 4 or 5 to give mixtures of the corresponding bis(&mgr;-pyrazolato) &mgr;-chloro complexes [(eta(6)-p-cymene)Ru(&mgr;-pz)(2)(&mgr;-Cl)M'{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (9), Ni (10)) and the triply pyrazolato-bridged complexes [(eta(6)-p-cymene)Ru(&mgr;-pz)(3)M'{HB(3-i-Pr-4-Br-pz)(3)}] (M' = Co (11), Ni (12)).
View Article and Find Full Text PDF