Publications by authors named "Andrew J Demello"

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

Cells can dynamically organize reactions through the formation of biomolecular condensates. These viscoelastic networks exhibit complex material properties and mesoscale architectures, including the ability to form multiphase assemblies. It was shown previously that condensates with complex architectures may arise at equilibrium in multicomponent systems or in condensates that were driven out of equilibrium by changes in external parameters such as temperature.

View Article and Find Full Text PDF

Cell-cell interactions are essential for the proper functioning of multicellular organisms. For example, T cells interact with antigen-presenting cells (APCs) through specific T-cell receptor (TCR)-antigen interactions during an immune response. Fluorescence-activated droplet sorting (FADS) is a high-throughput technique for efficiently screening cellular interaction events.

View Article and Find Full Text PDF

Nature is home to a variety of microorganisms that create materials under environmentally friendly conditions. While this offers an attractive approach for sustainable manufacturing, the production of materials by native microorganisms is usually slow and synthetic biology tools to engineer faster microorganisms are only available when prior knowledge of genotype-phenotype links is available. Here, we utilize a high-throughput directed evolution platform to enhance the fitness of whole microorganisms under selection pressure and identify genetic pathways to enhance the material production capabilities of native species.

View Article and Find Full Text PDF

lustered egularly nterspaced hort alindromic epeats-RISPR-ssociated rotein (CRISPR-Cas) systems have evolved several mechanisms to specifically target foreign DNA. These properties have made them attractive as biosensors. The primary drawback associated with contemporary CRISPR-Cas biosensors is their weak signaling capacity, which is typically compensated for by coupling the CRISPR-Cas systems to nucleic acid amplification.

View Article and Find Full Text PDF

Paper-based rapid diagnostic tests (RDTs) are an essential component of modern healthcare, particularly for the management of infectious diseases. Despite their utility, these capillary-driven RDTs are compromised by high failure rates, primarily caused by user error. This limits their utility in complex assays that require multiple user operations.

View Article and Find Full Text PDF

Affinity protein-oligonucleotide conjugates are increasingly being explored as diagnostic and therapeutic tools. Despite growing interest, these probes are typically constructed using outdated, non-selective chemistries, and little has been done to investigate how conjugation to oligonucleotides influences the function of affinity proteins. Herein, we report a novel site-selective conjugation method for furnishing affinity protein-oligonucleotide conjugates in a 93% yield within fifteen minutes.

View Article and Find Full Text PDF

Due to their ability to selectively target pathogen-specific nucleic acids, CRISPR-Cas systems are increasingly being employed as diagnostic tools. "One-pot" assays that combine nucleic acid amplification and CRISPR-Cas systems (NAAT-CRISPR-Cas) in a single step have emerged as one of the most popular CRISPR-Cas biosensing formats. However, operational simplicity comes at a cost, with one-pot assays typically being less sensitive than corresponding two-step NAAT-CRISPR-Cas assays and often failing to detect targets at low concentrations.

View Article and Find Full Text PDF

A major challenge for the regeneration of chronic wounds is an underlying dysregulation of signaling molecules, including inflammatory cytokines and growth factors. To address this, it is proposed to use granular biomaterials composed of jammed microgels, to enable the rapid uptake and delivery of biomolecules, and provide a strategy to locally sequester and release biomolecules. Sequestration assays on model biomolecules of different sizes demonstrate that granular hydrogels exhibit faster transport than comparable bulk hydrogels due to enhanced surface area and decreased diffusion lengths.

View Article and Find Full Text PDF

Electrochemical paper-based microfluidics has attracted much attention due to the promise of transforming point-of-care diagnostics by facilitating quantitative analysis with low-cost and portable analyzers. Such devices harness capillary flow to transport samples and reagents, enabling bioassays to be executed passively. Despite exciting demonstrations of capillary-driven electrochemical tests, conventional methods for fabricating electrodes on paper impede capillary flow, limit fluidic pathways, and constrain accessible device architectures.

View Article and Find Full Text PDF

Freezing and freeze-drying processes are commonly used to extend the shelf life of drug products and to ensure their safety and efficacy upon use. When designing a freezing process, it is beneficial to characterize multiple physicochemical properties of the formulation, such as nucleation rate, crystal growth rate, temperature and concentration of the maximally freeze-concentrated solution, and melting point. Differential scanning calorimetry has predominantly been used in this context but does have practical limitations and is unable to quantify the kinetics of crystal growth and nucleation.

View Article and Find Full Text PDF

We present an ultrahigh-throughput, real-time fluorescence cytometer comprising a viscoelastic microfluidic system and a complementary metal-oxide-semiconductor (CMOS) linear image sensor-based detection system. The flow cytometer allows for real-time quantification of a variety of fluorescence species, including micrometer-sized particles and cells, at analytical throughputs in excess of 400,000 species per second. The platform integrates a custom C++ control program and graphical user interface (GUI) to allow for the processing of raw signals, adjustment of processing parameters, and display of fluorescence intensity histograms in real time.

View Article and Find Full Text PDF

Microfluidic methods for the synthesis of nanomaterials allow the generation of high-quality products with outstanding structural, electronic and optical properties. At a fundamental level, this is engendered by the ability to control both heat and mass transfer in a rapid and precise manner, but also by the facile integration of in-line characterization tools and machine learning algorithms. Such integrated platforms provide for exquisite control over material properties during synthesis, accelerate the optimization of electronic and optical properties and bestow new insights into the optoelectronic properties of nanomaterials.

View Article and Find Full Text PDF

Human-infecting pathogens that transmit through the air pose a significant threat to public health. As a prominent instance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic has affected the world in an unprecedented manner over the past few years. Despite the dissipating pandemic gloom, the lessons we have learned in dealing with pathogen-laden aerosols should be thoroughly reviewed because the airborne transmission risk may have been grossly underestimated.

View Article and Find Full Text PDF

Small extracellular vesicles (sEVs; <200 nm) that contain lipids, nucleic acids, and proteins are considered promising biomarkers for a wide variety of diseases. Conventional methods for sEV isolation from blood are incompatible with routine clinical workflows, significantly hampering the utilization of blood-derived sEVs in clinical settings. Here, we present a simple, viscoelastic-based microfluidic platform for label-free isolation of sEVs from human blood.

View Article and Find Full Text PDF

The development of low-cost, disposable electrochemical sensors is an essential step in moving traditionally inaccessible quantitative diagnostic assays toward the point of need. However, a major remaining limitation of current technologies is the reliance on standardized reference electrode materials. Integrating these reference electrodes considerably restricts the choice of the electrode substrate and drastically increases the fabrication costs.

View Article and Find Full Text PDF

We present a portable imaging flow cytometer comprising a smartphone, a small-footprint optical framework, and a PDMS-based microfluidic device. Flow cytometric analysis is performed in a sheathless manner via elasto-inertial focusing with a custom-written Android program, integrating a graphical user interface (GUI) that provides a high degree of user control over image acquisition. The proposed system offers two different operational modes.

View Article and Find Full Text PDF

In 2018, Ashwin and co-workers presented a method for the selective and sensitive detection of Pd based on variations in the fluorescence of coumarin (C460). Herein, we re-evaluate the ability of C460 to probe Pd concentration via a systematic reproduction of the experiments reported in the original publication and the performance of additional control experiments. Our analysis indicates that C460 is in fact not a fluorescence sensor for Pd, but rather can act as a pH sensor over a restricted pH range.

View Article and Find Full Text PDF

Coronary microvascular disease is one of the responsible factors for cardiac perfusion impairment. Due to diagnostic and treatment challenges, this pathology (characterized by alterations to microvasculature local hemodynamics) represents a significant yet unsolved clinical problem. Due to the poor understanding of the onset and progression of this disease, we propose a new and noninvasive strategy to quantify hemodynamic changes occurring in the microvasculature.

View Article and Find Full Text PDF

Cell lineage tracking is a long-standing and unresolved problem in biology. Microfluidic technologies have the potential to address this problem, by virtue of their ability to manipulate and process single-cells in a rapid, controllable and efficient manner. Indeed, when coupled with traditional imaging approaches, microfluidic systems allow the experimentalist to follow single-cell divisions over time.

View Article and Find Full Text PDF

Microfluidic paper-based analytical devices (µPADs) are indispensable tools for disease diagnostics. The integration of electronic components into µPADs enables new device functionalities and facilitates the development of complex quantitative assays. Unfortunately, current electrode fabrication methods often hinder capillary flow, considerably restricting µPAD design architectures.

View Article and Find Full Text PDF

Although the role of RNA binding proteins (RBPs) in extracellular RNA (exRNA) biology is well established, their exRNA cargo and distribution across biofluids are largely unknown. To address this gap, we extend the exRNA Atlas resource by mapping exRNAs carried by extracellular RBPs (exRBPs). This map was developed through an integrative analysis of ENCODE enhanced crosslinking and immunoprecipitation (eCLIP) data (150 RBPs) and human exRNA profiles (6,930 samples).

View Article and Find Full Text PDF