Publications by authors named "Andrew J Cal"

Many studies have been conducted to produce microbial polyhydroxyalkanoates (PHA), a biopolymer, from Pseudomonas sp. fed with various alkanoic acids. Because this previous data was collected using methodologies that varied in critical aspects, such as culture media and size range of alkanoic acids, it has been difficult to compare the results for a thorough understanding of the relationship between feedstock and PHA production.

View Article and Find Full Text PDF

Despite being used as a common platform for the commercial production of many biochemicals, Bacilli are often overlooked as a source of industrial polyhydroxyalkanoates (PHAs), biodegradable plastic replacements. In addition to having a robust expression system, the lack of lipopolysaccharides and ease of lysis make Bacilli an attractive host for the production of PHAs. In this work, a Bacillus megaterium strain was engineered to generate poly(3-hydroxybutyrate-co-4-hydroxybutryate) (P[3HB-co-4HB]) copolymers, which are among the most useful and industrially-relevant copolymers.

View Article and Find Full Text PDF

Soil drying causes leaf rolling in rice, but the relationship between leaf rolling and drought tolerance has historically confounded selection of drought-tolerant genotypes. In this study on tropical japonica and aus diversity panels (170-220 genotypes), the degree of leaf rolling under drought was more affected by leaf morphology than by stomatal conductance, leaf water status, or maintenance of shoot biomass and grain yield. A range of canopy temperature and leaf rolling (measured as change in normalized difference vegetation index [ΔNDVI]) combinations were observed among aus genotypes, indicating that some genotypes continued transpiration while rolled.

View Article and Find Full Text PDF

Methanotrophs have been studied since the 1970s, but interest has increased tremendously in recent years due to their potential to transform methane into valuable bioproducts. The vast quantity of available methane and the low price of methane as natural gas have helped to spur this interest. The most well-studied, biologically-derived products from methane include methanol, polyhydroxyalkanoates, and single cell protein.

View Article and Find Full Text PDF

Type II methanotrophic bacteria are a promising production platform for PHA biopolymers. These bacteria are known to produce pure poly-3-hydroxybutyrate homopolymer (PHB). We isolated a strain, Methylocystis sp.

View Article and Find Full Text PDF

Cultivated buckwheat, such as common (Fagopyrum esculentum Moench.) and tartary (Fagopyrum tataricum (L.) Gaertn.

View Article and Find Full Text PDF

Inhibition of leaf elongation and expansion is one of the earliest responses of rice to water deficit. Despite this sensitivity, a great deal of genetic variation exists in the extant of leaf elongation rate (LER) reduction in response to declining soil moisture. We analyzed global gene expression in the leaf elongation zone under drought in two rice cultivars with disparate LER sensitivities to water stress.

View Article and Find Full Text PDF

Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes.

View Article and Find Full Text PDF

Studying the genetic regulation of expression variation is a key method to dissect complex phenotypic traits. To examine the genetic architecture of regulatory variation in Arabidopsis thaliana, we performed genome-wide association (GWA) mapping of gene expression in an F(1) hybrid diversity panel. At a genome-wide false discovery rate (FDR) of 0.

View Article and Find Full Text PDF