The thermal microenvironments of corals is a topic of current interest given their relationship to coral bleaching. We present computational fluid dynamics (CFD) model of corals with both smooth and rugged polyp surface topographies for two species of massive corals (Leptastrea purpurea and Platygyra sinensis) in order to predict their microscale surface warming. This study explores whether variation in polyp depth (PD) may directly effect a coral overall surface area-to-volume (A/V) ratio and consequently its surface warming.
View Article and Find Full Text PDFLight distribution on coral reefs is very heterogeneous at the microhabitat level and is an important determinant of coral thermal microenvironments. This study implemented a solar load model that uses a backward ray-tracing method to estimate macroscale and microscale variations of solar irradiance penetrating the ocean surface and impacting the surfaces of coral colonies. We then explored whether morphological characteristics such as tissue darkness (or pigmentation) and thickness may influence the amount of light captured and its spectral distribution by two contrasting coral colony morphologies, branching and massive.
View Article and Find Full Text PDFThis work examines the ejection of droplets from a bursting gas bubble on a free liquid surface, both experimentally and numerically. We explore the physical processes which govern the bursting of bubbles and the subsequent formation of "jet" droplets. We present new relationships regarding the dependence of jet drop formation on bubble diameter.
View Article and Find Full Text PDFA long-standing interest in marine science is in the degree to which environmental conditions of flow and irradiance, combined with optical, thermal and morphological characteristics of individual coral colonies, affects their sensitivity of thermal microenvironments and susceptibility to stress-induced bleaching within and/or among colonies. The physiological processes in Scleractinian corals tend to scale allometrically as a result of physical and geometric constraints on body size and shape. There is a direct relationship between scaling to thermal stress, thus, the relationship between allometric scaling and rates of heating and cooling in coral microenvironments is a subject of great interest.
View Article and Find Full Text PDFRepetitive brief episodes of soft-tissue collapse within the upper airway during sleep characterize obstructive sleep apnea (OSA), an extremely common and disabling disorder. Failure to maintain the patency of the upper airway is caused by the combination of sleep-related loss of compensatory dilator muscle activity and aerodynamic forces promoting closure. The prediction of soft-tissue movement in patient-specific airway 3D mechanical models is emerging as a useful contribution to clinical understanding and decision making.
View Article and Find Full Text PDFThe most collapsible part of the upper airway in the majority of individuals is the velopharynx which is the segment positioned behind the soft palate. As such it is an important morphological region for consideration in elucidating the pathogenesis of obstructive sleep apnea (OSA). This study compared steady flow properties during inspiration in the pharynges of nine male subjects with OSA and nine body-mass index (BMI)- and age-matched control male subjects without OSA.
View Article and Find Full Text PDFWe present Computational Fluid Dynamics (CFD) models of the coupled dynamics of water flow, heat transfer and irradiance in and around corals to predict temperatures experienced by corals. These models were validated against controlled laboratory experiments, under constant and transient irradiance, for hemispherical and branching corals. Our CFD models agree very well with experimental studies.
View Article and Find Full Text PDFThe well-known phenomena of Plateau-Rayleigh instability has been simulated using computational fluid dynamics (CFD). The breakup of a liquid film into an array of droplets on a cylindrical element was simulated using a volume-of-fluid (VOF) solver and compared to experimental observations and existing theory. It is demonstrated that the VOF method can correctly predict the breakup of thins films into an array of either axisymmetric droplets or clam-shell droplets, depending on the surface energy.
View Article and Find Full Text PDF