The oxidative stress response is centered on the transcription factor NRF2 and protects cells from reactive oxygen species (ROS). While ROS inhibit the E3 ligase CUL3 to stabilize NRF2 and elicit antioxidant gene expression, cells recovering from stress must rapidly reactivate CUL3 to prevent reductive stress and oxeiptosis-dependent cell death. How cells restore efficient NRF2-degradation upon ROS clearance remains poorly understood.
View Article and Find Full Text PDFStress response pathways detect and alleviate adverse conditions to safeguard cell and tissue homeostasis, yet their prolonged activation induces apoptosis and disrupts organismal health. How stress responses are turned off at the right time and place remains poorly understood. Here we report a ubiquitin-dependent mechanism that silences the cellular response to mitochondrial protein import stress.
View Article and Find Full Text PDFVortex crystals are quasiregular arrays of like-signed vortices in solid-body rotation embedded within a uniform background of weaker vorticity. Vortex crystals are observed at the poles of Jupiter and in laboratory experiments with magnetized electron plasmas in axisymmetric geometries. We show that vortex crystals form from the free evolution of randomly excited two-dimensional turbulence on an idealized polar cap.
View Article and Find Full Text PDFCloud-tracked wind observations document the role of eddies in putting momentum into the zonal jets. Chemical tracers, lightning, clouds, and temperature anomalies document the rising and sinking in the belts and zones, but questions remain about what drives the flow between the belts and zones. We suggest an additional role for the eddies, which is to generate waves that propagate both up and down from the cloud layer.
View Article and Find Full Text PDFBackground: The lack of interoperable IT systems between residential aged care facilities (RACF) and general practitioners (GP) in primary care settings in Australia introduces the potential for medication discrepancies and other medication errors. The aim of the GRACEMED study is to determine the extent and potential severity of medication discrepancies between general practice and RACFs, and identify factors associated with medication discrepancies.
Methods: A cross sectional study of medication discrepancies between RACF medication orders and GP medication lists was conducted in the Sydney North Health Network, Australia.
Proc Natl Acad Sci U S A
September 2020
From its pole-to-pole orbit, the spacecraft discovered arrays of cyclonic vortices in polygonal patterns around the poles of Jupiter. In the north, there are eight vortices around a central vortex, and in the south there are five. The patterns and the individual vortices that define them have been stable since August 2016.
View Article and Find Full Text PDFLightning flashes have been observed by a number of missions that visited or flew by Jupiter over the past several decades. Imagery led to a flash rate estimate of about 4 × 10 flashes per square kilometre per year (refs. ).
View Article and Find Full Text PDFIn the first 20 orbits of the Juno spacecraft around Jupiter, we have identified a variety of wave-like features in images made by its public-outreach camera, JunoCam. Because of Juno's unprecedented and repeated proximity to Jupiter's cloud tops during its close approaches, JunoCam has detected more wave structures than any previous surveys. Most of the waves appear in long wave packets, oriented east-west and populated by narrow wave crests.
View Article and Find Full Text PDFBefore Cassini, scientists viewed Saturn's unique features only from Earth and from three spacecraft flying by. During more than a decade orbiting the gas giant, Cassini studied the planet from its interior to the top of the atmosphere. It observed the changing seasons, provided up-close observations of Saturn's exotic storms and jet streams, and heard Saturn's lightning, which cannot be detected from Earth.
View Article and Find Full Text PDFLightning has been detected on Jupiter by all visiting spacecraft through night-side optical imaging and whistler (lightning-generated radio waves) signatures. Jovian lightning is thought to be generated in the mixed-phase (liquid-ice) region of convective water clouds through a charge-separation process between condensed liquid water and water-ice particles, similar to that of terrestrial (cloud-to-cloud) lightning. Unlike terrestrial lightning, which emits broadly over the radio spectrum up to gigahertz frequencies, lightning on Jupiter has been detected only at kilohertz frequencies, despite a search for signals in the megahertz range .
View Article and Find Full Text PDFThe latitude-altitude map of ammonia mixing ratio shows an ammonia-rich zone at 0-5°N, with mixing ratios of 320-340 ppm, extending from 40-60 bars up to the ammonia cloud base at 0.7 bars. Ammonia-poor air occupies a belt from 5-20°N.
View Article and Find Full Text PDFThe Lorenz energy cycle is widely used to investigate atmospheres and climates on planets. However, the long-term temporal variations of such an energy cycle have not yet been explored. Here we use three independent meteorological data sets from the modern satellite era, to examine the temporal characteristics of the Lorenz energy cycle of Earth's global atmosphere in response to climate change.
View Article and Find Full Text PDFInsulin signaling plays key roles in development, growth and metabolism through dynamic control of glucose uptake, global protein translation and transcriptional regulation. Altered levels of insulin signaling are known to play key roles in development and disease, yet the molecular basis of such differential signaling remains obscure. Expression of the insulin receptor (InR) gene itself appears to play an important role, but the nature of the molecular wiring controlling InR transcription has not been elucidated.
View Article and Find Full Text PDFJ Geophys Res Planets
September 2016
We use observations from the Imaging Science Subsystem on Cassini to create maps of Saturn's Northern Hemisphere (NH) from 2008 to 2015, a time period including a seasonal transition (i.e., Spring Equinox in 2009) and the 2010 giant storm.
View Article and Find Full Text PDFHere we report the combined spacecraft observations of Saturn acquired over one Saturnian year (~29.5 Earth years), from the Voyager encounters (1980-81) to the new Cassini reconnaissance (2009-10). The combined observations reveal a strong temporal increase of tropic temperature (~10 Kelvins) around the tropopause of Saturn (i.
View Article and Find Full Text PDFThe Cassini spacecraft has been in orbit around Saturn since 30 June 2004, yielding a wealth of data about the Saturn system. This review focuses on the atmosphere and magnetosphere and briefly outlines the state of our knowledge after the Cassini prime mission. The mission has addressed a host of fundamental questions: What processes control the physics, chemistry, and dynamics of the atmosphere? Where does the magnetospheric plasma come from? What are the physical processes coupling the ionosphere and magnetosphere? And, what are the rotation rates of Saturn's atmosphere and magnetosphere?
View Article and Find Full Text PDFThe camera onboard the Cassini spacecraft has allowed us to observe many of Saturn's cloud features. We present observations of Saturn's south polar vortex (SPV) showing that it shares some properties with terrestrial hurricanes: cyclonic circulation, warm central region (the eye) surrounded by a ring of high clouds (the eye wall), and convective clouds outside the eye. The polar location and the absence of an ocean are major differences.
View Article and Find Full Text PDFTitan, the largest moon of Saturn, is the only satellite in the Solar System with a substantial atmosphere. The atmosphere is poorly understood and obscures the surface, leading to intense speculation about Titan's nature. Here we present observations of Titan from the imaging science experiment onboard the Cassini spacecraft that address some of these issues.
View Article and Find Full Text PDFThe Cassini Imaging Science Subsystem acquired about 26,000 images of the Jupiter system as the spacecraft encountered the giant planet en route to Saturn. We report findings on Jupiter's zonal winds, convective storms, low-latitude upper troposphere, polar stratosphere, and northern aurora. We also describe previously unseen emissions arising from Io and Europa in eclipse, a giant volcanic plume over Io's north pole, disk-resolved images of the satellite Himalia, circumstantial evidence for a causal relation between the satellites Metis and Adrastea and the main jovian ring, and information on the nature of the ring particles.
View Article and Find Full Text PDFIn their pioneering work, Leighton and Murray argued that the Mars atmosphere, which at present is 95% carbon dioxide, is controlled by vapor equilibrium with a much larger polar reservoir of solid carbon dioxide. Here we argue that the polar reservoir is small and cannot function as a long-term buffer to the more massive atmosphere. Our work is based on modeling of the circular depressions commonly found on the south polar cap.
View Article and Find Full Text PDF