Excipients are added to biopharmaceutical formulations to enhance protein stability and enable the development of robust formulations with acceptable physicochemical properties, but the mechanism by which they confer stability is not fully understood. Here, we aimed to elucidate the mechanism through direct experimental evidence of the binding affinity of an excipient to a monoclonal antibody (mAb), using saturation transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopic method. We ranked a series of excipients with respect to their dissociation constant (K) and nonspecific binding constants (N).
View Article and Find Full Text PDFProtein adsorption on surfaces can result in loss of drug product stability and efficacy during the production, storage, and administration of protein-based therapeutics. Surface-active agents (excipients) are typically added in protein formulations to prevent undesired interactions of proteins on surfaces and protein particle formation/aggregation in solution. The objective of this work is to understand the molecular-level competitive adsorption mechanism between the monoclonal antibody (mAb) and a commercially used excipient, polysorbate 80 (PS80), and a novel excipient, -myristoyl phenylalanine--polyetheramine diamide (FM1000).
View Article and Find Full Text PDFThe interaction of monoclonal antibodies (mAbs) with air/water interfaces plays a crucial role in their overall stability in solution. We aim to understand this behavior using pendant bubble measurements to track the dynamic tension reduction and x-ray reflectivity to obtain the electron density profiles (EDPs) at the surface. Native immunoglobulin G mAb is a rigid molecule with a flat, "Y" shape, and simulated EDPs are obtained by rotating a homology construct at the surface.
View Article and Find Full Text PDFDuring the development of a therapeutic monoclonal antibody (mAb-1), the charge variant profile obtained by pH-gradient cation exchange chromatography (CEX) contained two main peaks, each of which exhibited a unique intrinsic fluorescence profile and demonstrated inter-convertibility upon reinjection of isolated peak fractions. Domain analysis of mAb-1 by CEX and liquid chromatography-mass spectrometry indicated that the antigen-binding fragment chromatographed as two separate peaks that had identical mass. Surface plasmon resonance binding analysis to antigen demonstrated comparable kinetics/affinity between these fractionated peaks and unfractionated starting material.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2020
The pharmaceutical industry uses surface-active agents (excipients) in protein drug formulations to prevent the aggregation, denaturation, and unwanted immunological response of therapeutic drugs in solution as well as at the air/water interface. However, the mechanism of adsorption, desorption, and aggregation of proteins at the interface in the presence of excipients remains poorly understood. The objective of this work is to explore the molecular-scale competitive adsorption process between surfactant-based excipients and two monoclonal antibody (mAb) proteins, mAb-1 and mAb-2.
View Article and Find Full Text PDFBatteries and their defects are notoriously difficult to analyze non-destructively, and consequently, many defects and failures remain little noticed and characterized until they cause grave damage. The measurement of the current density distributions inside a battery could reveal information about deviations from ideal cell behavior, and could thus provide early signs of deterioration or failures. Here, we describe methodology for fast nondestructive assessment and visualization of the effects of current distributions inside Li-ion pouch cells.
View Article and Find Full Text PDFBiotechnol Bioeng
October 2019
Histidine is a frequently used buffer in the final formulation of many commercialized monoclonal antibodies (mAbs), with histidine helping to stabilize the antibody during storage in addition to its buffering function. The objective of this study was to examine the stereospecificity of any histidine-antibody interactions using a combination of experimental studies and molecular dynamics simulations. Isothermal titration calorimetry provided evidence of weak stereospecific interactions, with the antibody showing approximately two to four additional interaction sites for d- versus l-histidine.
View Article and Find Full Text PDFProper risk analysis needs to be in place to understand the susceptibility of protein to unfold and aggregate in the presence of interfacial and/or shear stress. Certain techniques, such as agitation/shaking studies, have been traditionally used to understand the impact of these stresses on the protein physical stability. However, the stresses applied in these systems are convoluted, making it difficult to define the control strategy (i.
View Article and Find Full Text PDFWhen and why does a rechargeable battery lose capacity or go bad? This is a question that is surprisingly difficult to answer; yet, it lies at the heart of progress in the fields of consumer electronics, electric vehicles, and electrical storage. The difficulty is related to the limited amount of information one can obtain from a cell without taking it apart and analyzing it destructively. Here, we demonstrate that the measurement of tiny induced magnetic field changes within a cell can be used to assess the level of lithium incorporation into the electrode materials, and diagnose certain cell flaws that could arise from assembly.
View Article and Find Full Text PDFThe spatial resolution of traditional Magnetic Resonance Imaging (MRI) techniques is typically dictated by the strength of the applied magnetic field gradients, resulting in hard resolution limits of the order of 20-50 μm in favorable circumstances. We demonstrate here a technique which is suitable for the interrogation of regions at specified distances below the surface of conducting objects with a resolution well below these limiting values. This approach does not rely on magnetic field gradients, but rather on the spatial variation of the radiofrequency field within a conductor.
View Article and Find Full Text PDFTriple Quantum Filters (TQFs) are frequently used for the selection of bi-exponentially relaxing spin 3/2 nuclei (in particular Na) in ordered environments, such as biological tissues. These methods provide an excellent selection of slow-motion spins, but their sensitivity is generally low, and coherence selection requirements may lead to long experiments when applied in vivo. Alternative methods, such as 2P DIM, have demonstrated that the sensitivities of the signals from bi-exponentially relaxing sodium can be significantly increased using strategies other than TQFs.
View Article and Find Full Text PDFOne of the major challenges in using magnetic resonance imaging (MRI) to study immobile samples, such as solid materials or rigid tissues like bone or ligaments, is that the images appear dark due to these samples' short-lived signals. Although it is well known that narrowband signals can be excited in inhomogeneously-broadened lines, it is less well known that similar effects can be observed in dipolar-broadened systems. These long-lived signals have not been used much, mainly because their description frequently does not match intuition.
View Article and Find Full Text PDFReindeer skin clothing has been an essential component in the lives of indigenous people of the arctic and sub-arctic regions, keeping them warm during harsh winters. However, the skin processing technology, which often conveys the history and tradition of the indigenous group, has not been well documented. In this study, NMR spectra and relaxation behaviors of reindeer skin samples treated with a variety of vegetable tannin extracts, oils and fatty substances are studied and compared.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2016
Lithium metal is a promising anode material for Li-ion batteries due to its high theoretical specific capacity and low potential. The growth of dendrites is a major barrier to the development of high capacity, rechargeable Li batteries with lithium metal anodes, and hence, significant efforts have been undertaken to develop new electrolytes and separator materials that can prevent this process or promote smooth deposits at the anode. Central to these goals, and to the task of understanding the conditions that initiate and propagate dendrite growth, is the development of analytical and nondestructive techniques that can be applied in situ to functioning batteries.
View Article and Find Full Text PDFUnderstanding the behavior of tablet disintegrants is valuable in the development of pharmaceutical solid dosage formulations. In this study, high-resolution magnetic resonance imaging has been used to understand the hydration behavior of a series of commercial sodium starch glycolate (SSG) samples, providing robust estimates of tablet disintegration rate that could be correlated with physicochemical properties of the SSGs, such as the extent of phosphorus (P) cross-linking as obtained from infra-red spectroscopy. Furthermore, elemental analysis together with powder X-ray diffraction has been used to quantify the presence of carboxymethyl groups and salt impurities, which also contribute to the disintegration behavior.
View Article and Find Full Text PDFLithium dendrite growth in lithium ion and lithium rechargeable batteries is associated with severe safety concerns. To overcome these problems, a fundamental understanding of the growth mechanism of dendrites under working conditions is needed. In this work, in situ (7)Li magnetic resonance (MRI) is performed on both the electrolyte and lithium metal electrodes in symmetric lithium cells, allowing the behavior of the electrolyte concentration gradient to be studied and correlated with the type and rate of microstructure growth on the Li metal electrode.
View Article and Find Full Text PDFAlthough substitution of aluminum into iron oxides and oxyhydroxides has been extensively studied, it is difficult to obtain accurate incorporation levels. Assessing the distribution of dopants within these materials has proven especially challenging because bulk analytical techniques cannot typically determine whether dopants are substituted directly into the bulk iron oxide or oxyhydroxide phase or if they form separate, minor phase impurities. These differences have important implications for the chemistry of these iron-containing materials, which are ubiquitous in the environment.
View Article and Find Full Text PDFThe study of arctic or subarctic indigenous skin clothing material, known for its design and ability to keep the body warm, provides information about the tanning materials and techniques. The study also provides clues about the culture that created it, since tanning processes are often specific to certain indigenous groups. Untreated skin samples and samples treated with willow (Salix sp) bark extract and cod liver oil are compared in this study using both MRI and unilateral NMR techniques.
View Article and Find Full Text PDFThe last decade has seen an intensified interest in the development and use of electrochemical double-layer capacitors, fuelled by the availability of new electrode materials. The use of nanoporous carbons, in particular, with extremely high surface areas for ion adsorption has enabled the development of working devices with significantly increased capacitances that have become viable alternatives to lithium-ion batteries in certain applications. An understanding of the charge storage mechanism and the ion dynamics inside the nanopores is only just emerging, with the most compelling evidence coming from simulation.
View Article and Find Full Text PDFWhile experiments on metals have been performed since the early days of NMR (and DNP), the use of bulk metal is normally avoided. Instead, often powders have been used in combination with low fields, so that skin depth effects could be neglected. Another complicating factor of acquiring NMR spectra or MRI images of bulk metal is the strong signal dependence on the orientation between the sample and the radio frequency (rf) coil, leading to non-intuitive image distortions and inaccurate quantification.
View Article and Find Full Text PDFThe well-tempered, smoothly converging form of the metadynamics algorithm has been implemented in classical molecular dynamics simulations and used to obtain an estimate of the free energy surface explored by the molecular rotations in the plastic crystal, octafluoronaphthalene. The biased simulations explore the full energy surface extremely efficiently, more than 4 orders of magnitude faster than unbiased molecular dynamics runs. The metadynamics collective variables used have also been expanded to include the simultaneous orientations of three neighboring octafluoronaphthalene molecules.
View Article and Find Full Text PDFTo date, in situ nuclear magnetic resonance (NMR) studies of working batteries have been performed in static mode, i.e., in the absence of magic angle spinning (MAS).
View Article and Find Full Text PDFSolid-state NMR is used to characterise dynamics in the ethanol solvate of the pharmaceutical material formoterol fumarate and its associated desolvate. Jump rates and activation barriers for dynamic processes such as phenyl ring rotation and methyl group rotational diffusion are derived from 1D-EXSY and (13)C spin-lattice relaxation times respectively. (2)H and (13)C spin-lattice relaxation times measured under magic-angle spinning conditions are used to show that the fumarate ion in the desolvate is undergoing small-amplitude motion on a frequency scale of 100s of MHz at ambient temperature with an activation parameter of about 32 kJ mol(-1).
View Article and Find Full Text PDF(1)H MAS NMR experiments were performed on gold nanoparticles coated with l-cysteine. The experiments show that l-cysteine molecules are zwitterions and support a structural model of cysteine forming two layers. The inner layer is composed of cysteine molecules chemisorbed to the gold surface via the sulfur atom.
View Article and Find Full Text PDF