ACS Appl Mater Interfaces
April 2017
Micropatterned polymer surfaces, possessing both topographical and chemical characteristics, were prepared on three-dimensional copper tubes and used to capture atmospheric water. The micropatterns mimic the structure on the back of a desert beetle that condenses water from the air in a very dry environment. The patterned coatings were prepared by the dewetting of thin films of poly-4-vinylpyridine (P4VP) on top of polystyrene films (PS) films, upon solvent annealing, and consist of raised hydrophilic bumps on a hydrophobic background.
View Article and Find Full Text PDFAn amperometric non-enzymatic glucose sensor was developed based on nitrogen-doped graphene with dispersed copper nanoparticles (Cu-NGr). The sensing element was tested in conjunction with a modified glassy carbon electrode for glucose detection. The Cu-NGr composite was prepared by one pot synthesis from a mixture of graphene oxide, copper nitrate and uric acid, followed by thermal annealing at 900°C for 1h.
View Article and Find Full Text PDFThe topography of a biomaterial regulates cellular interactions and determine stem cell fate. A complete understanding of how topographical properties affect cell behavior will allow the rational design of material surfaces that elicit specified biological functions once placed in the body. To this end, we fabricate substrates with aligned or randomly organized fibrous nanostructured topographies.
View Article and Find Full Text PDFRaman spectroscopy is among the primary techniques for the characterisation of graphene materials, as it provides insights into the quality of measured graphenes including their structure and conductivity as well as the presence of dopants. However, our ability to draw conclusions based on such spectra is limited by a lack of understanding regarding the origins of the peaks. Consequently, traditional characterisation techniques, which estimate the quality of the graphene material using the intensity ratio between the D and the G peaks, are unreliable for both GO and rGO.
View Article and Find Full Text PDFA novel flexible three-dimensional (3D) architecture of nitrogen and sulfur codoped graphene has been successfully synthesized via thermal treatment of a liquid crystalline graphene oxide-doping agent composition, followed by a soft self-assembly approach. The high temperature process turns the layer-by-layer assembly into a high surface area macro- and nanoporous free-standing material with different atomic configurations of graphene. The interconnected 3D network exhibits excellent charge capacitive performance of 305 F g(-1) (at 100 mV s(-1)), an unprecedented volumetric capacitance of 188 F cm(-3) (at 1 A g(-1)), and outstanding energy density of 28.
View Article and Find Full Text PDFDoping of graphene has emerged as a key strategy to improve the electrocatalytic performance of the oxygen reduction reaction (ORR). Activated graphene co-doped with iodine and nitrogen atoms (NIG) was developed in this work using a facile scalable approach. The onset potential, current density, and four-electron reduction pathway of the newly developed catalyst were significantly improved.
View Article and Find Full Text PDFRecent developments in graphene oxide fibre (GO) processing include exciting demonstrations of hand woven textile structures. However, it is uncertain whether the fibres produced can meet the processing requirements of conventional textile manufacturing. This work reports for the first time the production of highly flexible and tough GO fibres that can be knitted using textile machinery.
View Article and Find Full Text PDFGraphene quantum dots (GQDs) with their edge-bound nanometer-size present distinctive properties owing to quantum confinement and edge effects. We report a facile ultrasonic approach with chemical activation using KOH to prepare activated GQDs or aGQDs enriched with both free and bound edges. Compared to GQDs, the aGQDs we synthesized had enhanced BET surface area by a factor of about six, the photoluminescence intensity by about four and half times and electro-capacitance by a factor of about two.
View Article and Find Full Text PDFThe successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions.
View Article and Find Full Text PDFThe reaction of nitric oxide (NO) and carbonaceous materials generates nitrogen functionalities on and in graphitic carbons and oxidizes some of the carbon. Here, we have exploited these phenomena to provide a novel route to surface-functionalized multiwalled carbon nanotubes (MWCNTs). We investigated the impacts of NO on the physical and chemical properties of industrially synthesized multiwalled carbon nanotubes to find a facile treatment that increased the specific surface area (SBET) of the MWCNTs by ∼20%, with only a minimal effect on their degree of graphitization.
View Article and Find Full Text PDFHerein, boronic acid is incorporated into a graphene oxide (GO) structure in order to synthesise a graphene organic framework (GOF) with enhanced electrochemical performance. The results obtained indicate that the GOF favours a 4e(-) reduction pathway in the oxygen reduction reaction (ORR).
View Article and Find Full Text PDFAqueous phase exfoliation was developed for producing high-yield graphene nanosheets from expanded graphite (EG). The process included ultrasonication with sodium dodecyl sulfate (SDS) emulsion in aqueous phase. The high throughput exfoliation process was characterized by UV-vis spectroscopy, transmission electron microscopy (TEM) and electrical impedance spectroscopy (EIS).
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2013
Herein, we report a solid-state reduction process (in contrast to solution-based approach) by using an environmentally friendly reductant, such as vitamin C (denoted VC), to be directly employed to solid-state graphene oxide (GO) templates to give the highly active rGO architecture with a sheet resistance of as low as 10 Ω sq(-1). In addition, predesigned rGO patterns/tracks with tunable resistivity can be directly "written" on a preprepared solid GO film via the inkjet-printing technique using VC/H2O as the printing-ink. This advanced reduction process allows foreign active materials to be preincorporated into the GO matrix to form quality active composite architectures.
View Article and Find Full Text PDFA series of Pt catalysts supported on Al₂O₃ that was doped with different amounts of CeO₂ was developed, characterized, and tested in the aqueous-phase reforming (APR) of glycerol to H₂. Catalyst 3Pt/3CeAl, which bore 3 wt% Pt on a support that contained 3 wt % CeO₂, showed the highest carbon conversion to gas (85%) and the highest H₂ yield (80%) for a feedstock of 1 wt% glycerol in water at 240 °C and 40 bar. A CeO₂/Al₂O₃ support with only 1 wt% Pt also showed high H₂ selectivity and carbon conversion to gas, as well as a much lower CH₄ yield than the benchmark 3Pt/Al catalyst, clearly demonstrating that doping the support with 3 wt% CeO2 improved the APR of glycerol.
View Article and Find Full Text PDFAligned multiwalled carbon nanotube (CNT) arrays were prepared using chemical vapor deposition of C2H4 on Fe catalyst at 750 °C. CNT array height and alignment depends strongly on the duration of H2 pretreatment, with optimal height and alignment achieved using 10-15 min pretreatment. Small-angle X-ray scattering (SAXS) was used to quantify the alignment, distribution, and size of the CNTs in arrays produced from varying pretreatment times and the results correlated with microscopy measurements.
View Article and Find Full Text PDFPreparation of bismuth vanadate and cerium dioxide (BiVO4/CeO2) nanocomposites as visible-light photocatalysts was successfully obtained by coupling a homogeneous precipitation method with hydrothermal techniques. The BiVO4/CeO2 nanocomposites with different mole ratios were synthesized and characterized by X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). Absorption range and band gap energy, which are responsible for the observed photocatalyst behavior, were investigated by UV-vis diffuse reflectance (UV-vis DR) spectroscopy.
View Article and Find Full Text PDFProton-exchange membrane fuel cells (PEMFCs) are expected to provide a complementary power supply to fossil fuels in the near future. The current reliance of fuel cells on platinum catalysts is undesirable. However, even the best-performing non-noble metal catalysts are not as efficient.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2012
A highly sensitive and selective dopamine sensor was fabricated with the unique 3D carbon nanotube nanoweb (CNT-N) electrode. The as-synthesised CNT-N was modified by oxygen plasma to graft functional groups in order to increase selective electroactive sites at the CNT sidewalls. This electrode was characterized physically and electrochemically using HRSEM, Raman, FT-IR, and cyclic voltammetry (CV).
View Article and Find Full Text PDFA novel Si-MWNT nanocomposite synthesized via a CVD process shows a high reversible capacity of over 1500 mAh g(-1) and stable cycling performance, which can be ascribed to the maintenance of a good conductive network by means of the direct scattered growth and pinning of MWNTs on Si particles.
View Article and Find Full Text PDFThe photoconversion of photomorphic silver nanoparticles from discs to prisms via citrate mediated growth on the twin plane faces of the nanoparticles is demonstrated. This systematic shape evolution from discs to hexagons and then prisms of increasing aspect ratios is a result of the growth process being confined to specific faces of the growing nanoparticles.
View Article and Find Full Text PDFA novel designed free-standing, sandwich-structured membrane electrode assembly (MEA), nano-Pt loaded (0.142 mg cm(-2)) ACNT/Nafion/ACNT via the attachment of two sets of aligned CNT array electrode structures to opposite sides of a Nafion PEM membrane exhibits significantly improved performance compared to commercially available Pt/CB catalysts used in PEM fuel cell applications.
View Article and Find Full Text PDFThe use of nanostructured carbon materials as electrodes for energy storage and conversion is an expanding area of research in recent years. Herein, platinum nanoparticles have been deposited onto both multi-walled and single-walled carbon nanotubes (CNTs) via a microwave assisted polyol reduction method. This interaction has been probed with electron paramagnetic resonance (EPR) and Raman spectroscopies to elucidate the charge/electron transfer interactions between the Pt nanoparticles and the CNTs.
View Article and Find Full Text PDF