Doping through the incorporation of transition metal ions allows for the emergence of new optical, electrical, and magnetic properties in quantum dots (QDs). While dopants can be introduced into QDs through many synthetic methods, the control of dopant location and host-dopant (H-D) coupling through directional dopant movement is still largely unexplored. In this work, we have studied dopant behaviors in Mn:CdS/ZnS core/shell QDs and found that dopant transport behavior is very sensitive to the temperature and microenvironments within the QDs.
View Article and Find Full Text PDFDynamic materials have been given an increased amount of attention in recent years with an expectation that they may exhibit properties on demand. Especially, the combination of fluorescent quantum dots (QDs) and light-responsive organic switches can generate novel photo-switchable materials for diverse applications. In this work, a highly reversible dynamic hybrid system is established by mixing dual-color emitting Mn-doped CdS-ZnS quantum dots (QDs) with photo-switchable diarylethene molecules.
View Article and Find Full Text PDFTransition metal ion doped one-dimensional (1-D) nanocrystals (NCs) have advantages of larger absorption cross sections and polarized absorption and emissions in comparison to 0-D NCs. However, direct synthesis of doped 1-D nanorods (NRs) or nanowires (NWs) has proven challenging. In this study, we report the synthesis of 1-D Mn-doped ZnSe NWs using a colloidal hot-injection method and shell passivation for core/shell NWs with tunable optical properties.
View Article and Find Full Text PDF