We report an approach to waterborne and degradable latex polymers. Emulsion polymerization of vinyl acetate (VA) with the cyclic ketene acetal 2-methylene-1,3-dioxepane (MDO) yields polymer particles and latex-based coatings that are hydrolytically degradable due to the presence of backbone ester groups. Polymerization under mildly basic conditions (pH 8) and at low temperature (40 °C) is critical: if the in-process pH is too acidic or the temperature too high, MDO is lost to hydrolysis, but when the media is too alkaline, VA monomer rapidly hydrolyzes.
View Article and Find Full Text PDFRational design of second-generation ruthenium olefin metathesis catalysts with desired initiation rates can be enabled by a computational model that depends on a single thermodynamic parameter. Using a computational model with no assumption about the specific initiation mechanism, the initiation kinetics of a spectrum of second-generation ruthenium olefin metathesis catalysts bearing modified chelating -alkoxy benzylidenes were predicted in this work. Experimental tests of the validity of the computational model were achieved by the synthesis of a series of ruthenium olefin metathesis catalysts and investigation of initiation rates by UV/Vis kinetics, NMR spectroscopy, and structural characterization by X-ray crystallography.
View Article and Find Full Text PDF