Publications by authors named "Andrew Hegle"

Background: Cannabis contains Δ-tetrahydrocannabinol (Δ-THC) and cannabidiol (CBD) as the primary constituents responsible for pharmacological activity. However, there are numerous additional chemically-related structures to Δ-THC and CBD that are pharmacologically active and may influence the pharmacological properties of Δ-THC and CBD. This study chemically characterized the cannabinoid constituents in a series of cannabis chemovar extracts and investigated the potential cannabinoid entourage effect in two behavioral assays.

View Article and Find Full Text PDF

Hyperpolarization-activated cyclic nucleotide-gated "HCN" channels, which underlie the hyperpolarization-activated current (I), have been proposed to play diverse roles in neurons. The presynaptic HCN channel is thought to both promote and inhibit neurotransmitter release from synapses, depending upon its interactions with other presynaptic ion channels. In larvae of , inhibition of the presynaptic HCN channel by the drug ZD7288 reduces the enhancement of neurotransmitter release at motor terminals by serotonin but this drug has no effect on basal neurotransmitter release, implying that the channel does not contribute to firing under basal conditions.

View Article and Find Full Text PDF

Hyperpolarization-activated Cyclic Nucleotide (HCN) channels are voltage-gated cation channels and are critical for regulation of membrane potential in electrically active cells. To understand the evolution of these channels at the molecular level, we cloned and examined two of three HCN homologs of the urochordate Ciona intestinalis (ciHCNa and ciHCNb). ciHCNa is like mammalian HCNs in that it possesses similar electrical function and undergoes N-glycosylation of a sequon near the pore.

View Article and Find Full Text PDF

All four mammalian hyperpolarization-activated cyclic nucleotide-modulated (HCN) channel isoforms have been shown to undergo N-linked glycosylation in the brain. With the mouse HCN2 isoform as a prototype, HCN channels have further been suggested to require N-glycosylation for function, a provocative finding that would make them unique in the voltage-gated potassium channel superfamily. Here, we show that both the HCN1 and HCN2 isoforms are also predominantly N-glycosylated in the embryonic heart, where they are found in significant amounts and where HCN-mediated currents are known to regulate beating frequency.

View Article and Find Full Text PDF

Voltage-gated channels maintain cellular resting potentials and generate neuronal action potentials by regulating ion flux. Here, we show that Ether-à-go-go (EAG) K+ channels also regulate intracellular signaling pathways by a mechanism that is independent of ion flux and depends on the position of the voltage sensor. Regulation of intracellular signaling was initially inferred from changes in proliferation.

View Article and Find Full Text PDF

Signaling complexes are essential for the modulation of excitability within restricted neuronal compartments. Adaptor proteins are the scaffold around which signaling complexes are organized. Here, we demonstrate that the Camguk (CMG)/CASK adaptor protein functionally modulates Drosophila Ether-á-go-go (EAG) potassium channels.

View Article and Find Full Text PDF