Publications by authors named "Andrew Harman"

Anogenital inflammation is a critical risk factor for HIV acquisition. The primary preventative HIV intervention, pre-exposure prophylaxis (PrEP), is ineffective in blocking transmission in anogenital inflammation. Pre-existing sexually transmitted diseases (STIs) and anogenital microbiota dysbiosis are the leading causes of inflammation, where inflammation is extensive and often asymptomatic and undiagnosed.

View Article and Find Full Text PDF

HIV infection implicates a spectrum of tissues in the human body starting with viral transmission in the anogenital tract and subsequently persisting in lymphoid tissues and brain. Though studies using isolated cells have contributed significantly towards our understanding of HIV infection, the tissue microenvironment is characterised by a complex interplay of a range of factors, all of which can influence the course of infection but are otherwise missed in ex vivo studies. To address this knowledge gap, it is necessary to investigate the dynamics of infection and the host immune response in situ using imaging-based approaches.

View Article and Find Full Text PDF

AXL+ Siglec-6+ dendritic cells (ASDC) are novel myeloid DCs which can be subdivided into CD11c+ and CD123+ expressing subsets. We showed for the first time that these two ASDC subsets are present in inflamed human anogenital tissues where HIV transmission occurs. Their presence in inflamed tissues was supported by single cell RNA analysis of public databases of such tissues including psoriasis diseased skin and colorectal cancer.

View Article and Find Full Text PDF

HSV infects keratinocytes in the epidermis of skin via nectin-1. We established a human foreskin explant infection model to investigate HSV entry and spread. HSV1 entry could only be achieved by the topical application of virus via high density microarray projections (HD-MAPs) to the epidermis, which penetrated beyond one third of its thickness, simulating in vivo microtrauma.

View Article and Find Full Text PDF

We introduce a 35-marker imaging mass cytometry (IMC) panel for a detailed examination of immune cell populations and HIV RNA in formalin fixed paraffin embedded (FFPE) human intestinal tissue. The panel has broad cell type coverage and particularly excels in delineating subsets of mononuclear phagocytes and T cells. Markers for key tissue structures are included, enabling identification of epithelium, blood vessels, lymphatics, and musculature.

View Article and Find Full Text PDF

The complexities and cellular heterogeneity associated with tissues necessitate the concurrent detection of markers beyond the limitations of conventional imaging approaches in order to spatially resolve the relationships between immune cell populations and their environments. This is a necessary complement to single-cell suspension-based methods to inform a better understanding of the events that may underlie pathological conditions. Imaging mass cytometry is a high-dimensional imaging modality that allows for the concurrent detection of up to 40 protein markers of interest across tissues at subcellular resolution.

View Article and Find Full Text PDF

Next-generation vaccines may be delivered via the skin and mucosa. The stratified squamous epithelium (SSE) represents the outermost layer of the skin (epidermis) and type II mucosa (epithelium). Langerhans cells (LCs) have been considered the sole antigen-presenting cells (APCs) to inhabit the SSE; however, it is now clear that dendritic cells (DCs) are also present.

View Article and Find Full Text PDF

The past 20 years have seen a dramatic shift in our understanding of the role of the immune system in initiating and maintaining pain. Myeloid cells, including macrophages, dendritic cells, Langerhans cells, and mast cells, are increasingly implicated in bidirectional interactions with nerve fibres in rodent pain models. However, our understanding of the human setting is still poor.

View Article and Find Full Text PDF

There is a great need to understand human immune cells within tissue, where disease manifests and infection occurs. Tissue-resident memory T cells (TRMs) were discovered over a decade ago, there is a great need to understand their role in human disease. We developed a 24-color flow cytometry panel to comprehensively interrogate CD4 and CD8 TRMs isolated from human tissues.

View Article and Find Full Text PDF

Highly multiplexed in situ imaging cytometry assays have made it possible to study the spatial organization of numerous cell types simultaneously. We have addressed the challenge of quantifying complex multi-cellular relationships by proposing a statistical method which clusters local indicators of spatial association. Our approach successfully identifies distinct tissue architectures in datasets generated from three state-of-the-art high-parameter assays demonstrating its value in summarizing the information-rich data generated from these technologies.

View Article and Find Full Text PDF

The initial immune response to HIV determines transmission. However, due to technical limitations we still do not have a comparative map of early mucosal transmission events. By combining RNAscope, cyclic immunofluorescence, and image analysis tools, we quantify HIV transmission signatures in intact human colorectal explants within 2 h of topical exposure.

View Article and Find Full Text PDF

Motivation: High parameter histological techniques have allowed for the identification of a variety of distinct cell types within an image, providing a comprehensive overview of the tissue environment. This allows the complex cellular architecture and environment of diseased tissue to be explored. While spatial analysis techniques have revealed how cell-cell interactions are important within the disease pathology, there remains a gap in exploring changes in these interactions within the disease process.

View Article and Find Full Text PDF

In tissue, mononuclear phagocytes (MNP) are comprised of Langerhans cells, dendritic cells, macrophages and monocyte-derived cells. They are the first immune cells to encounter HIV during transmission and transmit the virus to CD4 T cells as a consequence of their antigen presenting cell function. To understand the role these cells play in transmission, their phenotypic and functional characterisation is important.

View Article and Find Full Text PDF

We developed a 25-color flow cytometry panel to comprehensively interrogate innate lymphoid cells (ILC), mucosal-associated invariant T (MAIT) cells, natural killer (NK) cells and γδ T cells in human tissues. The ability to isolate and interrogate these cells from fresh human tissue is crucial in understanding the role these cells play at immune-privileged mucosal surfaces like the intestine in health and disease settings. However, liberating these cells from tissue is extremely challenging as many key surface identification markers are susceptible to enzymatic cleavage.

View Article and Find Full Text PDF

Dendritic cells (DC) are central to regulating innate and adaptive immune responses. Strategies that modify DC function provide new therapeutic opportunities in autoimmune diseases and transplantation. Current pharmacological approaches can alter DC phenotype to induce tolerogenic DC (tolDC), a maturation-resistant DC subset capable of directing a regulatory immune response that are being explored in current clinical trials.

View Article and Find Full Text PDF

Background: Intestinal neutrophil recruitment is a characteristic feature of the earliest stages of inflammatory bowel disease (IBD). Neutrophil elastase (NE) and myeloperoxidase (MPO) mediate the formation of neutrophil extracellular traps (NETs); NETs produce the bactericidal oxidant hypochlorous acid (HOCl), causing host tissue damage when unregulated. The project aim was to investigate the relationship between NET formation and clinical IBD in humans.

View Article and Find Full Text PDF

The human intestine contains numerous mononuclear phagocytes (MNP), including subsets of conventional dendritic cells (cDC), macrophages (Mf) and monocytes, each playing their own unique role within the intestinal immune system and homeostasis. The ability to isolate and interrogate MNPs from fresh human tissue is crucial if we are to understand the role of these cells in homeostasis, disease settings and immunotherapies. However, liberating these cells from tissue is problematic as many of the key surface identification markers they express are susceptible to enzymatic cleavage and they are highly susceptible to cell death.

View Article and Find Full Text PDF

Langerhans cells (LCs) reside in the epidermis where they are poised to mount an antimicrobial response against microbial pathogens invading from the outside environment. To elucidate potential pathways by which LCs contribute to host defense, we mined published LC transcriptomes deposited in GEO and the scientific literature for genes that participate in antimicrobial responses. Overall, we identified 31 genes in LCs that encode proteins that contribute to antimicrobial activity, ten of which were cross-validated in at least two separate experiments.

View Article and Find Full Text PDF

Skin mononuclear phagocytes (MNPs) provide the first interactions of invading viruses with the immune system. In addition to Langerhans cells (LCs), we recently described a second epidermal MNP population, Epi-cDC2s, in human anogenital epidermis that is closely related to dermal conventional dendritic cells type 2 (cDC2) and can be preferentially infected by HIV. Here we show that in epidermal explants topically infected with herpes simplex virus (HSV-1), both LCs and Epi-cDC2s interact with HSV-1 particles and infected keratinocytes.

View Article and Find Full Text PDF

Although HIV infection inhibits interferon responses in its target cells in vitro, interferon signatures can be detected in vivo soon after sexual transmission, mainly attributed to plasmacytoid dendritic cells (pDCs). In this study, we examined the physiological contributions of pDCs to early HIV acquisition using coculture models of pDCs with myeloid DCs, macrophages and the resting central, transitional and effector memory CD4 T cell subsets. pDCs impacted infection in a cell-specific manner.

View Article and Find Full Text PDF
Article Synopsis
  • Tissue mononuclear phagocytes (MNP) play a crucial role in detecting pathogens and presenting antigens, with a focus on HIV transmission to CD4 T cells.
  • Previous studies primarily targeted epithelial MNPs, but this research highlights the importance of sub-epithelial MNPs, especially in the context of mucosal trauma and inflammation linked to HIV transmission.
  • The study identifies two specific subsets of sub-epithelial MNPs—CD14CD1c monocyte-derived dendritic cells and langerin-expressing conventional dendritic cells 2 (cDC2)—that are key in taking up HIV, becoming infected, and facilitating its transmission to CD4 T cells.
View Article and Find Full Text PDF