Publications by authors named "Andrew H Rice"

Objective/background: Over the past decade, multidisciplinary "toe and flow" programs have gained great popularity, with proven benefits in limb salvage. Many vascular surgeons have incorporated podiatrists into their practices. The viability of this practice model requires close partnership, hospital support, and financial sustainability.

View Article and Find Full Text PDF

We report the versatile synthesis of two tribenzo[fj,ij,rst]pentaphene (TBP) derivatives bearing two diarylamine substituents attached at the opposite ends of the aromatic core. Field effect transistor (FET) devices of the bis-diarylamine-TBP compounds were fabricated using spin coating under different concentrations, spin speed, and solvent conditions. Emission spectra and surface investigation by atomic force microscopy (AFM) reveal the formation of aggregates induced by the strong π-π stacking of the aromatic core leading to island features, and thus, unexpected low hole mobilities.

View Article and Find Full Text PDF

Charge transport is one of the five main steps in the operation of organic photovoltaics, but achieving balanced hole and electron transport with high mobility has been challenging in devices. Here, we report improved charge transport in organic photovoltaics via incorporation of nanostructured inorganic electron transport materials into the active layers of devices. Co-depositing TiO2 nanowires with the organic active layer solution embeds the nanowires directly within active layers of the solar cell.

View Article and Find Full Text PDF

In this study, we demonstrate how the vertical morphology of bulk heterojunction solar cells, with an active layer consisting of self-assembled poly(3-hexylthiophene) (P3HT) nanowires and phenyl-C(61)-butyric acid methyl ester (PCBM), can be beneficially influenced. Most device fabrication routes using similar materials employ an annealing step to influence active layer morphology, but this process can create an unfavorable phase migration where P3HT is driven toward the top of the active layer. In contrast, we demonstrate devices that exhibit an increase in relative fullerene concentration at the top of the active layer by introducing the donor phase as a solid nanowire in the active layer solution and altering the pre-spin drying time.

View Article and Find Full Text PDF