Proc Natl Acad Sci U S A
March 2018
Meiotic crossovers shuffle parental genetic information, providing novel combinations of alleles on which natural or artificial selection can act. However, crossover events are relatively rare, typically one to three exchange points per chromosome pair. Recent work has identified three pathways limiting meiotic crossovers in that rely on the activity of FANCM [Crismani W, et al.
View Article and Find Full Text PDFMeiosis, the basis of sex, evolved through iterative gene duplications. To understand whether subsequent duplications have further enriched the core meiotic "tool-kit," we investigated the fate of meiotic gene duplicates following whole genome duplication (WGD), a common occurrence in eukaryotes. We show that meiotic genes return to a single copy more rapidly than genome-wide average in angiosperms, one of the lineages in which WGD is most vividly exemplified.
View Article and Find Full Text PDFPlant Signal Behav
May 2012
DNA transfer to the nucleus from prokaryotic ancestors of the cytoplasmic organelles (mitochondria and plastids) has occurred during endosymbiotic evolution in eukaryotes. In most eukaryotes, organelle DNA transfer to nucleus is a continuing process. The frequency of DNA transposition from plastid (chloroplast) to nucleus has been measured in tobacco plants (Nicotiana tabacum) experimentally.
View Article and Find Full Text PDFMob Genet Elements
September 2011
The origin of new genes has long been considered a fundamental question in evolutionary biology. In eukaryotes, a major pathway for the 'birth' of new nuclear genes has been transfer of genes from the cytoplasmic organelles (mitochondria and plastids) to the nucleus. While the vast majority of gene transfer occurred shortly after endosymbiosis, the process continues today and is still driving the evolution of nuclear genomes.
View Article and Find Full Text PDFDNA double strand breaks (DSBs) occur constantly in eukaryotes. These potentially lethal DNA lesions are repaired efficiently by two major DSB repair pathways: homologous recombination and non-homologous end joining (NHEJ). We investigated NHEJ in Arabidopsis thaliana and tobacco (Nicotiana tabacum) by introducing DNA double-strand breaks through inducible expression of I-SceI, followed by amplification of individual repair junction sequences by single-molecule PCR.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2012
Mitochondria and chloroplasts (photosynthetic members of the plastid family of cytoplasmic organelles) in eukaryotic cells originated more than a billion years ago when an ancestor of the nucleated cell engulfed two different prokaryotes in separate sequential events. Extant cytoplasmic organellar genomes contain very few genes compared with their candidate free-living ancestors, as most have functionally relocated to the nucleus. The first step in functional relocation involves the integration of inactive DNA fragments into nuclear chromosomes, and this process continues at high frequency with attendant genetic, genomic, and evolutionary consequences.
View Article and Find Full Text PDFIn higher plants, DNA transfer from the plastid (chloroplast) genome to the nucleus is a frequent, ongoing process. However, there has been uncertainty over whether this transfer occurs by a direct DNA mechanism or whether RNA intermediates are involved. Previous experiments utilising transplastomic Nicotiana tabacum (tp7 and tp17) enabled the detection of plastid-to-nucleus transfer in real time.
View Article and Find Full Text PDFEndosymbiotic transfer of DNA and functional genes from the cytoplasmic organelles (mitochondria and chloroplasts) to the nucleus has been a major factor driving the origin of new nuclear genes, a process central to eukaryote evolution. Although organelle DNA transfers very frequently to the nucleus, most is quickly deleted, decays, or is alternatively scrapped. However, a very small proportion of it gives rise, immediately or eventually, to functional genes.
View Article and Find Full Text PDFBackground: Chromosome pairing, recombination and DNA repair are essential processes during meiosis in sexually reproducing organisms. Investigating the bread wheat (Triticum aestivum L.) Ph2 (Pairing homoeologous) locus has identified numerous candidate genes that may have a role in controlling such processes, including TaMSH7, a plant specific member of the DNA mismatch repair family.
View Article and Find Full Text PDF