Publications by authors named "Andrew Grier"

Article Synopsis
  • The Starfish Procedure offers a solution for patients with partial hand amputations, enabling them to use myoelectric prosthetic fingers for better gripping ability.
  • It involves muscle transfers that help generate precise electromyographic signals for controlling each finger individually, reducing signal interference.
  • This procedure is designed to be straightforward for hand surgeons, as it requires no microsurgery and can be tailored through careful preoperative planning.
View Article and Find Full Text PDF

Background:  Limb-threatening lower extremity traumatic injuries can be devastating events with a multifaceted impact on patients. Therefore, evaluating patient-reported outcomes (PROs) in addition to traditional surgical outcomes is important. However, currently available instruments are limited as they were not developed specific to lower extremity trauma patients and lack content validity.

View Article and Find Full Text PDF

The original version of this Article contained an error in the Acknowledgements, which incorrectly omitted the following: 'We also acknowledge support from the Australian Research Council's Discovery Projects Funding Scheme (Grant DP 160 103910).' This has been corrected in both the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

Single-mode frequency-tuneable semiconductor lasers based on monolithic integration of multiple cavity sections are important components, widely used in optical communications, photonic integrated circuits and other optical technologies. To date, investigations of the ultrafast switching processes in such lasers, essential to reduce frequency cross-talk, have been restricted to the observation of intensity switching over nanosecond-timescales. Here, we report coherent measurements of the ultrafast switch-on dynamics, mode competition and frequency selection in a monolithic frequency-tuneable laser using coherent time-domain sampling of the laser emission.

View Article and Find Full Text PDF

We propose a laser feedback interferometer operating at multiple terahertz (THz) frequency bands by using a pulsed coupled-cavity THz quantum cascade laser (QCL) under optical feedback. A theoretical model that contains multi-mode reduced rate equations and thermal equations is presented, which captures the interplay between electro-optical, thermal, and feedback effects. By using the self-heating effect in both active and passive cavities, self-mixing signal responses at three different THz frequency bands are predicted.

View Article and Find Full Text PDF

We explain the origin of voltage variations due to self-mixing in a terahertz (THz) frequency quantum cascade laser (QCL) using an extended density matrix (DM) approach. Our DM model allows calculation of both the current-voltage (I-V) and optical power characteristics of the QCL under optical feedback by changing the cavity loss, to which the gain of the active region is clamped. The variation of intra-cavity field strength necessary to achieve gain clamping, and the corresponding change in bias required to maintain a constant current density through the heterostructure is then calculated.

View Article and Find Full Text PDF

Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics.

View Article and Find Full Text PDF

We present, and derive analytic expressions for, a fundamental limit to the sympathetic cooling of ions in radio-frequency traps using cold atoms. The limit arises from the work done by the trap electric field during a long-range ion-atom collision and applies even to cooling by a zero-temperature atomic gas in a perfectly compensated trap. We conclude that in current experimental implementations, this collisional heating prevents access to the regimes of single-partial-wave atom-ion interaction or quantized ion motion.

View Article and Find Full Text PDF

We study cold collisions between trapped ions and trapped atoms in the semiclassical (Langevin) regime. Using Yb+ ions confined in a Paul trap and Yb atoms in a magneto-optical trap, we investigate charge-exchange collisions of several isotopes over three decades of collision energies down to 3 mueV (k_{B}x35 mK). The minimum measured rate coefficient of 6x10;{-10} cm;{3} s;{-1} is in good agreement with that derived from a Langevin model for an atomic polarizability of 143 a.

View Article and Find Full Text PDF