Publications by authors named "Andrew Gatesman"

A novel technique using a W-band metasurface for the purpose of transmissive fine powder layer sensing is presented. The proposed technique may allow for the detection, identification, and characterization of inhomogeneous ultrafine powder layers which are effectively hundreds of times thinner than the incident wavelengths used to sense them. Such a technique may be useful during personnel screening processes (i.

View Article and Find Full Text PDF
Article Synopsis
  • A new textile metamaterial was developed by integrating metal wires into polymer yarn, leading to the formation of extended states similar to split-ring resonators.
  • Simulations indicate that these states can be readily adjusted by altering the material's geometry.
  • Measurements in the low terahertz range showed peaks that correlate with a polarization-dependent resonator model, suggesting potential use of these fabrics in flexible metamaterials for gigahertz and terahertz applications.
View Article and Find Full Text PDF

A coherent transceiver using a THz quantum cascade (TQCL) laser as the transmitter and an optically pumped molecular laser as the local oscillator has been used, with a pair of Schottky diode mixers in the receiver and reference channels, to acquire high-resolution images of fully illuminated targets, including scale models and concealed objects. Phase stability of the received signal, sufficient to allow coherent image processing of the rotating target (in azimuth and elevation), was obtained by frequency-locking the TQCL to the free-running, highly stable optically pumped molecular laser. While the range to the target was limited by the available TQCL power (several hundred microwatts) and reasonably strong indoor atmospheric attenuation at 2.

View Article and Find Full Text PDF

This paper reports on the effect of random Gaussian roughness with rms roughness values of 5-20 microm on the terahertz reflection spectra of metallic aluminum surfaces using Fourier transform IR spectroscopy. By comparing experimental data with a theoretical model based on the Kirchhoff approximation, the rms roughness of a surface is accurately determined. The rms roughness determined by this method is in good agreement with the rms roughness measured using a stylus surface profilometer.

View Article and Find Full Text PDF

A simple analog locking circuit was shown to stabilize the beat signal between a 2.408 THz quantum cascade laser and a CH(2)DOH THz CO(2) optically pumped molecular laser to 3-4 kHz (FWHM). This is approximately a tenth of the observed long-term (t approximately sec) linewidth of the optically pumped laser showing that the feedback loop corrects for much of the mechanical and acoustic-induced frequency jitter of the gas laser.

View Article and Find Full Text PDF

A compact, tunable, narrowband terahertz source was demonstrated by mixing a single longitudinal mode 2.408 THz, free running quantum cascade laser with a 2-20 GHz microwave sweeper in a conventional corner-cube-mounted Schottky diode. The sideband spectra were characterized with a Fourier transform spectrometer, and the radiation was tuned through several D(2)O rotational transitions to estimate the longer term (t > or = several sec) bandwidth of the source.

View Article and Find Full Text PDF

We demonstrate that a short hollow dielectric tube can act as a dielectric waveguide and transform the multimode, highly diverging terahertz quantum cascade laser beam into the lowest order dielectric waveguide hybrid mode, EH(11), which then couples efficiently to the free-space Gaussian mode, TEM(00). This simple approach should enable terahertz quantum cascade lasers to be employed in applications where a spatially coherent beam is required.

View Article and Find Full Text PDF

Free-standing frequency-selective surfaces consisting of approximately 10-microm-thick copper films with cross-aperture arrays are found to be tunable toward lower frequencies by means of wet chemical etching. Center frequencies were tuned from 1.57 to 1.

View Article and Find Full Text PDF