This work develops a technology for actuating droplets of any size without the requirement for high voltages or active control systems, which are typically found in competitive systems. The droplet actuation relies on two microelectrodes separated by a variable gap distance to generate an electrostatic gradient. The physical mechanism for the droplet motion is a combination of liquid dielectrophoresis and electrowetting.
View Article and Find Full Text PDFDeveloping highly efficient and stable photoelectrochemical (PEC) water-splitting electrodes via inexpensive, liquid phase processing is one of the key challenges for the conversion of solar energy into hydrogen for sustainable energy production. ZnO represents one the most suitable semiconductor metal oxide alternatives because of its high electron mobility, abundance, and low cost, although its performance is limited by its lack of absorption in the visible spectrum and reduced charge separation and charge transfer efficiency. Here, we present a solution-processed water-splitting photoanode based on Co-doped ZnO nanorods (NRs) coated with a transparent functionalizing metal-organic framework (MOF).
View Article and Find Full Text PDFIn this paper, we use a finite difference time domain solver to simulate the near field optical properties of self-assembled microsphere arrays when exposed to an incoherent light source. Such arrays are typically used for microsphere lithography where each sphere acts as a ball lens, focusing ultraviolet light into an underlying photoresist layer. It is well known that arrays of circular features can be patterned using this technique.
View Article and Find Full Text PDFWe report on the first observation of 'Spoof' Surface Plasmon Polariton (SPP) scattering from surface defects on metal-coated 3D printed, corrugated THz waveguiding surfaces. Surface defects, a result of the printing process, are shown to assist the direct coupling of the incident free-space radiation into a spoof SPP wave; removing the need to bridge the photon momentum gap using knife-edge or prism coupling. The free space characteristics, propagation losses and confinement of the spoof SPPs to the surface are measured, and the results are compared to finite-difference time domain simulations.
View Article and Find Full Text PDFSemiconducting nanowires (NWs) offer exciting prospects for a wide range of technological applications. The translation of NW science into technology requires reliable high quality large volume production. This study provides an in-depth investigation of the parameters using an atomic layer deposition system to grow zinc oxide (ZnO) seed layers followed by the chemical bath deposition (CBD) of ZnO NWs to demonstrate the low-cost production of uniform single crystal wurtzite phase ZnO NWs that is scalable to large area substrates.
View Article and Find Full Text PDFA vector network analyzer-based quasi-optical measurement system that is suitable for mapping electric field intensity and phase near to the surface of terahertz reflective optics is presented. The system uses a fixed five parabolic mirror and transmitter/receiver head arrangement that has the benefit of requiring only the sample to be swept during measurement. The system has been tested with a micromilled aluminum zone plate reflector used as an exemplar structure.
View Article and Find Full Text PDFNanosphere lithography, an inexpensive and high throughput technique capable of producing nanostructure (below 100 nm feature size) arrays, relies on the formation of a monolayer of self-assembled nanospheres, followed by custom-etching to produce nanometre size features on large-area substrates. A theoretical model underpinning the self-ordering process by centrifugation is proposed to describe the interplay between the spin speed and solution concentration. The model describes the deposition of a dense and uniform monolayer by the implicit contribution of gravity, centrifugal force and surface tension, which can be accounted for using only the spin speed and the solid/liquid volume ratio.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
June 2016
Motivation: The exponential growth of protein sequence databases has increasingly made the fundamental question of searching for homologs a computational bottleneck. The amount of unique data, however, is not growing nearly as fast; we can exploit this fact to greatly accelerate homology search. Acceleration of programs in the popular PSI/DELTA-BLAST family of tools will not only speed-up homology search directly but also the huge collection of other current programs that primarily interact with large protein databases via precisely these tools.
View Article and Find Full Text PDFBackground: New technology has resulted in high-throughput screens for pairwise genetic interactions in yeast and other model organisms. For each pair in a collection of non-essential genes, an epistasis score is obtained, representing how much sicker (or healthier) the double-knockout organism will be compared to what would be expected from the sickness of the component single knockouts. Recent algorithmic work has identified graph-theoretic patterns in this data that can indicate functional modules, and even sets of genes that may occur in compensatory pathways, such as a BPM-type schema first introduced by Kelley and Ideker.
View Article and Find Full Text PDFThe first demonstration, to our knowledge, of near-field imaging using subwavelength plasmonic apertures with a terahertz quantum cascade laser source is presented. "Bull's-eye" apertures, featuring subwavelength circular apertures flanked by periodic annular corrugations were created using a novel fabrication method. A fivefold increase in intensity was observed for plasmonic apertures over plain apertures of the same diameter.
View Article and Find Full Text PDFThe design and fabrication of a thermally actuated polymeric microgripper incorporating a bare gold working electrode is described. Initial electrochemical tests confirm that the microgripper sensor works as an effective microelectrode, opening up exciting possibilities in single cell measurements.
View Article and Find Full Text PDF