Publications by authors named "Andrew G White"

The exponential growth in Hilbert space with increasing size of a quantum system means that accurately characterizing the system becomes significantly harder with system dimension d. We show that self-guided tomography is a practical, efficient, and robust technique of measuring higher-dimensional quantum states. The achieved fidelities are over 99.

View Article and Find Full Text PDF

Cavity-enhanced single photon sources exhibit mode-locked biphoton states with comblike correlation functions. Our ultrabright source additionally emits single photon pairs as well as two-photon NOON states, dividing the output into an even and an odd comb, respectively. With even-comb photons we demonstrate revivals of the typical nonclassical Hong-Ou-Mandel interference up to the 84th dip, corresponding to a path length difference exceeding 100 m.

View Article and Find Full Text PDF

A strong limitation of linear optical quantum computing is the probabilistic operation of two-quantum-bit gates based on the coalescence of indistinguishable photons. A route to deterministic operation is to exploit the single-photon nonlinearity of an atomic transition. Through engineering of the atom-photon interaction, phase shifters, photon filters and photon-photon gates have been demonstrated with natural atoms.

View Article and Find Full Text PDF

Explaining observations in terms of causes and effects is central to empirical science. However, correlations between entangled quantum particles seem to defy such an explanation. This implies that some of the fundamental assumptions of causal explanations have to give way.

View Article and Find Full Text PDF

Scaling up linear-optics quantum computing will require multi-photon gates which are compact, phase-stable, exhibit excellent quantum interference, and have success heralded by the detection of ancillary photons. We investigate the design, fabrication and characterisation of the optimal known gate scheme which meets these requirements: the Knill controlled-Z gate, implemented in integrated laser-written waveguide arrays. We show device performance to be less sensitive to phase variations in the circuit than to small deviations in the coupler reflectivity, which are expected given the tolerance values of the fabrication method.

View Article and Find Full Text PDF

Transport phenomena on a quantum scale appear in a variety of systems, ranging from photosynthetic complexes to engineered quantum devices. It has been predicted that the efficiency of coherent transport can be enhanced through dynamic interaction between the system and a noisy environment. We report an experimental simulation of environment-assisted coherent transport, using an engineered network of laser-written waveguides, with relative energies and inter-waveguide couplings tailored to yield the desired Hamiltonian.

View Article and Find Full Text PDF

Quantum correlations can be stronger than anything achieved by classical systems, yet they are not reaching the limit imposed by relativity. The principle of information causality offers a possible explanation for why the world is quantum and why there appear to be no even stronger correlations. Generalizing the no-signaling condition it suggests that the amount of accessible information must not be larger than the amount of transmitted information.

View Article and Find Full Text PDF

Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einstein's field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxes can be resolved, leaving closed timelike curves consistent with relativity.

View Article and Find Full Text PDF

Quantum physics constrains the accuracy of joint measurements of incompatible observables. Here we test tight measurement-uncertainty relations using single photons. We implement two independent, idealized uncertainty-estimation methods, the three-state method and the weak-measurement method, and adapt them to realistic experimental conditions.

View Article and Find Full Text PDF

We introduce an efficient method for fully characterizing multimode linear-optical networks. Our approach requires only a standard laser source and intensity measurements to directly and uniquely determine all moduli and non-trivial phases of the matrix describing a network. We experimentally demonstrate the characterization of a 6×6 fiber-optic network and independently verify the results via nonclassical two-photon interference.

View Article and Find Full Text PDF

Quantum computers are unnecessary for exponentially efficient computation or simulation if the Extended Church-Turing thesis is correct. The thesis would be strongly contradicted by physical devices that efficiently perform tasks believed to be intractable for classical computers. Such a task is boson sampling: sampling the output distributions of n bosons scattered by some passive, linear unitary process.

View Article and Find Full Text PDF

Topological phases exhibit some of the most striking phenomena in modern physics. Much of the rich behaviour of quantum Hall systems, topological insulators, and topological superconductors can be traced to the existence of robust bound states at interfaces between different topological phases. This robustness has applications in metrology and holds promise for future uses in quantum computing.

View Article and Find Full Text PDF

Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date, all experimental tests with single-photon states have relied on post selection, allowing untrusted devices to cheat by hiding unfavourable events in losses.

View Article and Find Full Text PDF

Tests such as Bell's inequality and Hardy's paradox show that joint probabilities and correlations between distant particles in quantum mechanics are inconsistent with local realistic theories. Here we experimentally demonstrate these concepts in the time domain, using a photonic entangling gate to perform nondestructive measurements on a single photon at different times. We show that Hardy's paradox is much stronger in time and demonstrate the violation of a temporal Bell inequality independent of the quantum state, including for fully mixed states.

View Article and Find Full Text PDF

Many applications in optical quantum information processing benefit from careful spectral shaping of single-photon wave-packets. In this paper we tailor the joint spectral wave-function of photons created in parametric downconversion by engineering the nonlinearity profile of a poled crystal. We designed a crystal with an approximately Gaussian nonlinearity profile and confirmed successful wave-packet shaping by two-photon interference experiments.

View Article and Find Full Text PDF

Background: Animal vision spans a great range of complexity, with systems evolving to detect variations in light intensity, distribution, colour, and polarisation. Polarisation vision systems studied to date detect one to four channels of linear polarisation, combining them in opponent pairs to provide intensity-independent operation. Circular polarisation vision has never been seen, and is widely believed to play no part in animal vision.

View Article and Find Full Text PDF

The realization of an entangled photon source will be of great importance in quantum information--for example, for quantum key distribution and quantum computation--and Stevenson et al. have described such a source. However, we show here that first, their source is not entangled; second, they use inappropriate entanglement indicators that rely on assumptions invalidated by their data; and third, their source has insignificant entanglement even after simulating subtraction of the significant quantity of background noise.

View Article and Find Full Text PDF

Photopyroelectric (PPE) spectroscopy, in the 350-1,075 nm wavelength range, was used to study the optical properties of electropolymerized melanin films on indium tin oxide (ITO) coated glass. The PPE intensity signal as a function of the wavelength lambda, V (n)(lambda) and its phase F (n)(lambda) were independently measured. Using the PPE signal intensity and the thermal and optical properties of the pyroelectric detector, we were able to calculate the optical absorption coefficient beta of melanin in the solid-state.

View Article and Find Full Text PDF